Predicting missed health care visits during the COVID-19 pandemic using machine learning methods: evidence from 55,500 individuals from 28 European countries

Background: Pandemics such as the COVID-19 pandemic and other severe health care disruptions endanger individuals to miss essential care. Machine learning models that predict which patients are at greatest risk of missing care visits can help health administrators prioritize retentions efforts towar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Reuter, Anna (VerfasserIn) , Smolić, Šime (VerfasserIn) , Bärnighausen, Till (VerfasserIn) , Sudharsanan, Nikkil (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2023
In: BMC health services research
Year: 2023, Jahrgang: 23, Pages: 1-12
ISSN:1472-6963
DOI:10.1186/s12913-023-09473-w
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1186/s12913-023-09473-w
Volltext
Verfasserangaben:Anna Reuter, Šime Smolić, Till Bärnighausen and Nikkil Sudharsanan

MARC

LEADER 00000caa a2200000 c 4500
001 185347875X
003 DE-627
005 20240306104914.0
007 cr uuu---uuuuu
008 230724s2023 xx |||||o 00| ||eng c
024 7 |a 10.1186/s12913-023-09473-w  |2 doi 
035 |a (DE-627)185347875X 
035 |a (DE-599)KXP185347875X 
035 |a (OCoLC)1425059407 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Reuter, Anna  |e VerfasserIn  |0 (DE-588)115481758X  |0 (DE-627)1016185480  |0 (DE-576)501254390  |4 aut 
245 1 0 |a Predicting missed health care visits during the COVID-19 pandemic using machine learning methods  |b evidence from 55,500 individuals from 28 European countries  |c Anna Reuter, Šime Smolić, Till Bärnighausen and Nikkil Sudharsanan 
264 1 |c 2023 
300 |b Illustrationen 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Veröffentlicht: 25. Mai 2023 
500 |a Gesehen am 24.07.2023 
520 |a Background: Pandemics such as the COVID-19 pandemic and other severe health care disruptions endanger individuals to miss essential care. Machine learning models that predict which patients are at greatest risk of missing care visits can help health administrators prioritize retentions efforts towards patients with the most need. Such approaches may be especially useful for efficiently targeting interventions for health systems overburdened during states of emergency. Methods: We use data on missed health care visits from over 55,500 respondents of the Survey of Health, Ageing and Retirement in Europe (SHARE) COVID-19 surveys (June – August 2020 and June – August 2021) with longitudinal data from waves 1–8 (April 2004 – March 2020). We compare the performance of four machine learning algorithms (stepwise selection, lasso, random forest, and neural networks) to predict missed health care visits during the first COVID-19 survey based on common patient characteristics available to most health care providers. We test the prediction accuracy, sensitivity, and specificity of the selected models for the first COVID-19 survey by employing 5-fold cross-validation, and test the out-of-sample performance of the models by applying them to the data from the second COVID-19 survey. Results: Within our sample, 15.5% of the respondents reported any missed essential health care visit due to the COVID-19 pandemic. All four machine learning methods perform similarly in their predictive power. All models have an area under the curve (AUC) of around 0.61, outperforming random prediction. This performance is sustained for data from the second COVID-19 wave one year later, with an AUC of 0.59 for men and 0.61 for women. When classifying all men (women) with a predicted risk of 0.135 (0.170) or higher as being at risk of missing care, the neural network model correctly identifies 59% (58%) of the individuals with missed care visits, and 57% (58%) of the individuals without missed care visits. As the sensitivity and specificity of the models are strongly related to the risk threshold used to classify individuals, the models can be calibrated depending on users’ resource constraints and targeting approach. Conclusions: Pandemics such as COVID-19 require rapid and efficient responses to reduce disruptions in health care. Based on characteristics available to health administrators or insurance providers, simple machine learning algorithms can be used to efficiently target efforts to reduce missed essential care. 
650 4 |a COVID-19 
650 4 |a Europe 
650 4 |a Machine learning 
650 4 |a Missed care 
650 4 |a Prediction 
700 1 |a Smolić, Šime  |e VerfasserIn  |4 aut 
700 1 |a Bärnighausen, Till  |d 1969-  |e VerfasserIn  |0 (DE-588)120262029  |0 (DE-627)080560512  |0 (DE-576)178470848  |4 aut 
700 1 |a Sudharsanan, Nikkil  |e VerfasserIn  |0 (DE-588)1191848108  |0 (DE-627)1670317765  |4 aut 
773 0 8 |i Enthalten in  |t BMC health services research  |d London : BioMed Central, 2001  |g 23(2023), Artikel-ID 544, Seite 1-12  |h Online-Ressource  |w (DE-627)331018756  |w (DE-600)2050434-2  |w (DE-576)107014920  |x 1472-6963  |7 nnas  |a Predicting missed health care visits during the COVID-19 pandemic using machine learning methods evidence from 55,500 individuals from 28 European countries 
773 1 8 |g volume:23  |g year:2023  |g elocationid:544  |g pages:1-12  |g extent:12  |a Predicting missed health care visits during the COVID-19 pandemic using machine learning methods evidence from 55,500 individuals from 28 European countries 
856 4 0 |u https://doi.org/10.1186/s12913-023-09473-w  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20230724 
993 |a Article 
994 |a 2023 
998 |g 1191848108  |a Sudharsanan, Nikkil  |m 1191848108:Sudharsanan, Nikkil  |d 910000  |d 912800  |e 910000PS1191848108  |e 912800PS1191848108  |k 0/910000/  |k 1/910000/912800/  |p 4  |y j 
998 |g 120262029  |a Bärnighausen, Till  |m 120262029:Bärnighausen, Till  |d 910000  |d 912800  |e 910000PB120262029  |e 912800PB120262029  |k 0/910000/  |k 1/910000/912800/  |p 3 
998 |g 115481758X  |a Reuter, Anna  |m 115481758X:Reuter, Anna  |d 910000  |d 912800  |e 910000PR115481758X  |e 912800PR115481758X  |k 0/910000/  |k 1/910000/912800/  |p 1  |x j 
999 |a KXP-PPN185347875X  |e 4357168864 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"role":"aut","given":"Anna","display":"Reuter, Anna","family":"Reuter"},{"given":"Šime","role":"aut","family":"Smolić","display":"Smolić, Šime"},{"given":"Till","role":"aut","display":"Bärnighausen, Till","family":"Bärnighausen"},{"family":"Sudharsanan","display":"Sudharsanan, Nikkil","given":"Nikkil","role":"aut"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title":"Predicting missed health care visits during the COVID-19 pandemic using machine learning methods","subtitle":"evidence from 55,500 individuals from 28 European countries","title_sort":"Predicting missed health care visits during the COVID-19 pandemic using machine learning methods"}],"origin":[{"dateIssuedDisp":"2023","dateIssuedKey":"2023"}],"note":["Veröffentlicht: 25. Mai 2023","Gesehen am 24.07.2023"],"id":{"eki":["185347875X"],"doi":["10.1186/s12913-023-09473-w"]},"relHost":[{"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Predicting missed health care visits during the COVID-19 pandemic using machine learning methods evidence from 55,500 individuals from 28 European countriesBMC health services research","note":["Gesehen am 28.07.2021"],"origin":[{"dateIssuedKey":"2001","publisher":"BioMed Central","dateIssuedDisp":"2001-","publisherPlace":"London"}],"pubHistory":["1.2001 -"],"title":[{"title":"BMC health services research","title_sort":"BMC health services research"}],"id":{"eki":["331018756"],"issn":["1472-6963"],"zdb":["2050434-2"]},"physDesc":[{"extent":"Online-Ressource"}],"recId":"331018756","part":{"year":"2023","pages":"1-12","extent":"12","text":"23(2023), Artikel-ID 544, Seite 1-12","volume":"23"},"language":["eng"]}],"recId":"185347875X","physDesc":[{"noteIll":"Illustrationen","extent":"12 S."}],"name":{"displayForm":["Anna Reuter, Šime Smolić, Till Bärnighausen and Nikkil Sudharsanan"]}} 
SRT |a REUTERANNAPREDICTING2023