Cohomology of Lie superalgebras: forms, integral forms and coset superspaces

We study Chevalley-Eilenb erg cohomology of physically relevant Lie superalgebras related to supersymmetric theories, providing explicit expressions for their cocycles in terms of their Maurer-Cartan forms. We include integral forms in the picture by defining the notions of constant densities and in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cremonini, Carlo A. (VerfasserIn) , Grassi, Pietro A. (VerfasserIn) , Noja, Simone (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2023
In: Journal of Lie theory
Year: 2023, Jahrgang: 33, Heft: 2, Pages: 567-608
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://www.heldermann.de/JLT/JLT33/JLT332/jlt33024.htm
Volltext
Verfasserangaben:C.A. Cremonini, P.A. Grassi, S. Noja
Beschreibung
Zusammenfassung:We study Chevalley-Eilenb erg cohomology of physically relevant Lie superalgebras related to supersymmetric theories, providing explicit expressions for their cocycles in terms of their Maurer-Cartan forms. We include integral forms in the picture by defining the notions of constant densities and integral forms related to a Lie superalgebra. We develop a suitable generalization of Chevalley-Eilenb erg cohomology extended to integral forms and we prove that it is isomorphic via a Poincare duality-type pairing to the ordinary Chevalley-Eilenb erg cohomology of the Lie superalgebra. Next, we study equivariant Chevalley-Eilenb erg cohomology for coset superspaces, which play a crucial role in supergravity and superstring models. Again, we treat explicitly several examples, providing cocycles' expressions and revealing a characteristic infinite -dimensional cohomology.
Beschreibung:Gesehen am 25.07.2023
Beschreibung:Online Resource