Existence of traveling wave solutions to reaction-diffusion-ODE systems with hysteresis

This paper establishes the existence of traveling wave solutions to a reaction-diffusion equation coupled with a singularly perturbed first order ordinary differential equation with a small parameter ϵ>0. The system is a toy model for biological pattern formation. Traveling wave solutions corresp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hou, Lingling (VerfasserIn) , Kokubu, Hiroshi (VerfasserIn) , Marciniak-Czochra, Anna (VerfasserIn) , Takagi, Izumi (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 15 August 2023
In: Journal of differential equations
Year: 2023, Jahrgang: 364, Pages: 667-713
ISSN:1090-2732
DOI:10.1016/j.jde.2023.04.032
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jde.2023.04.032
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0022039623003042
Volltext
Verfasserangaben:Lingling Hou, Hiroshi Kokubu, Anna Marciniak-Czochra, Izumi Takagi

MARC

LEADER 00000caa a2200000 c 4500
001 1853910457
003 DE-627
005 20240307064554.0
007 cr uuu---uuuuu
008 230731s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jde.2023.04.032  |2 doi 
035 |a (DE-627)1853910457 
035 |a (DE-599)KXP1853910457 
035 |a (OCoLC)1425214199 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Hou, Lingling  |e VerfasserIn  |0 (DE-588)1023674661  |0 (DE-627)718176065  |0 (DE-576)367251469  |4 aut 
245 1 0 |a Existence of traveling wave solutions to reaction-diffusion-ODE systems with hysteresis  |c Lingling Hou, Hiroshi Kokubu, Anna Marciniak-Czochra, Izumi Takagi 
264 1 |c 15 August 2023 
300 |b Illustrationen 
300 |a 47 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht am 9. Mai 2023 
500 |a Gesehen am 30.11.2023 
520 |a This paper establishes the existence of traveling wave solutions to a reaction-diffusion equation coupled with a singularly perturbed first order ordinary differential equation with a small parameter ϵ>0. The system is a toy model for biological pattern formation. Traveling wave solutions correspond to heteroclinic orbits of a fast-slow system. Under some conditions, the reduced problem (with ϵ=0) has a heteroclinic orbit with jump discontinuity, while the layer problem (i.e., the fast subsystem obtained as another limit of ϵ→0) has an orbit filling the gap. We thus construct a singular orbit by piecing together these two orbits. The traveling wave solution is obtained in the neighborhood of the singular orbit. However, unlike the classical FitzHugh-Nagumo equations, the singular orbit contains a fold point where the normal hyperbolicity breaks down and the standard Fenichel theory is not applicable. To circumvent this difficulty we employ the directional blowup method for geometric desingularization around the fold point. 
650 4 |a Directional blowups 
650 4 |a Fast-slow systems 
650 4 |a Fold point 
650 4 |a Normally hyperbolic invariant manifolds 
650 4 |a Reaction-diffusion-ODE systems 
650 4 |a Traveling wave solutions 
700 1 |a Kokubu, Hiroshi  |e VerfasserIn  |4 aut 
700 1 |a Marciniak-Czochra, Anna  |d 1974-  |e VerfasserIn  |0 (DE-588)1044379626  |0 (DE-627)771928432  |0 (DE-576)397031505  |4 aut 
700 1 |a Takagi, Izumi  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Journal of differential equations  |d Orlando, Fla. : Elsevier, 1965  |g 364(2023) vom: Aug., Seite 667-713  |h Online-Ressource  |w (DE-627)266892566  |w (DE-600)1469173-5  |w (DE-576)103373209  |x 1090-2732  |7 nnas  |a Existence of traveling wave solutions to reaction-diffusion-ODE systems with hysteresis 
773 1 8 |g volume:364  |g year:2023  |g month:08  |g pages:667-713  |g extent:47  |a Existence of traveling wave solutions to reaction-diffusion-ODE systems with hysteresis 
856 4 0 |u https://doi.org/10.1016/j.jde.2023.04.032  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0022039623003042  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230731 
993 |a Article 
994 |a 2023 
998 |g 1044379626  |a Marciniak-Czochra, Anna  |m 1044379626:Marciniak-Czochra, Anna  |d 110000  |d 110400  |d 700000  |d 708000  |e 110000PM1044379626  |e 110400PM1044379626  |e 700000PM1044379626  |e 708000PM1044379626  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/708000/  |p 3 
999 |a KXP-PPN1853910457  |e 4361243883 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"display":"Hou, Lingling","roleDisplay":"VerfasserIn","role":"aut","family":"Hou","given":"Lingling"},{"roleDisplay":"VerfasserIn","display":"Kokubu, Hiroshi","role":"aut","family":"Kokubu","given":"Hiroshi"},{"role":"aut","display":"Marciniak-Czochra, Anna","roleDisplay":"VerfasserIn","given":"Anna","family":"Marciniak-Czochra"},{"family":"Takagi","given":"Izumi","roleDisplay":"VerfasserIn","display":"Takagi, Izumi","role":"aut"}],"title":[{"title_sort":"Existence of traveling wave solutions to reaction-diffusion-ODE systems with hysteresis","title":"Existence of traveling wave solutions to reaction-diffusion-ODE systems with hysteresis"}],"recId":"1853910457","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Online veröffentlicht am 9. Mai 2023","Gesehen am 30.11.2023"],"name":{"displayForm":["Lingling Hou, Hiroshi Kokubu, Anna Marciniak-Czochra, Izumi Takagi"]},"id":{"doi":["10.1016/j.jde.2023.04.032"],"eki":["1853910457"]},"origin":[{"dateIssuedDisp":"15 August 2023","dateIssuedKey":"2023"}],"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 16.07.13"],"disp":"Existence of traveling wave solutions to reaction-diffusion-ODE systems with hysteresisJournal of differential equations","language":["eng"],"recId":"266892566","pubHistory":["1.1965 -"],"part":{"text":"364(2023) vom: Aug., Seite 667-713","volume":"364","extent":"47","year":"2023","pages":"667-713"},"title":[{"title_sort":"Journal of differential equations","title":"Journal of differential equations"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Orlando, Fla. ; New York, NY [u.a.] ; Orlando, Fla.","dateIssuedDisp":"1965-","publisher":"Elsevier ; Academic Press ; Academic Press","dateIssuedKey":"1965"}],"id":{"issn":["1090-2732"],"eki":["266892566"],"zdb":["1469173-5"]}}],"physDesc":[{"extent":"47 S.","noteIll":"Illustrationen"}]} 
SRT |a HOULINGLINEXISTENCEO1520