Confinement in non-Abelian lattice gauge theory via persistent homology
We investigate the structure of confining and deconfining phases in SU(2) lattice gauge theory via persistent homology, which gives us access to the topology of a hierarchy of combinatorial objects constructed from given data. Specifically, we use filtrations by traced Polyakov loops, topological de...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
16 February 2023
|
| In: |
Physical review
Year: 2023, Volume: 107, Issue: 3, Pages: 1-22 |
| ISSN: | 2470-0029 |
| DOI: | 10.1103/PhysRevD.107.034506 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevD.107.034506 Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.107.034506 |
| Author Notes: | Daniel Spitz, Julian M. Urban, and Jan M. Pawlowski |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1853992984 | ||
| 003 | DE-627 | ||
| 005 | 20240307064338.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 230801s2023 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1103/PhysRevD.107.034506 |2 doi | |
| 035 | |a (DE-627)1853992984 | ||
| 035 | |a (DE-599)KXP1853992984 | ||
| 035 | |a (OCoLC)1425213895 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Spitz, Daniel |d 1994- |e VerfasserIn |0 (DE-588)1182934374 |0 (DE-627)1662935005 |4 aut | |
| 245 | 1 | 0 | |a Confinement in non-Abelian lattice gauge theory via persistent homology |c Daniel Spitz, Julian M. Urban, and Jan M. Pawlowski |
| 264 | 1 | |c 16 February 2023 | |
| 300 | |a 22 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 01.08.2023 | ||
| 520 | |a We investigate the structure of confining and deconfining phases in SU(2) lattice gauge theory via persistent homology, which gives us access to the topology of a hierarchy of combinatorial objects constructed from given data. Specifically, we use filtrations by traced Polyakov loops, topological densities, holonomy Lie algebra fields, as well as electric and magnetic fields. This allows for a comprehensive picture of confinement. In particular, topological densities form spatial lumps which show signatures of the classical probability distribution of instanton-dyons. Signatures of well-separated dyons located at random positions are encoded in holonomy Lie algebra fields, following the semiclassical temperature dependence of the instanton appearance probability. Debye screening discriminating between electric and magnetic fields is visible in persistent homology and pronounced at large gauge coupling. All employed constructions are gauge-invariant without a priori assumptions on the configurations under study. This work showcases the versatility of persistent homology for statistical and quantum physics studies, barely explored to date. | ||
| 700 | 1 | |a Urban, Julian M. |d 1994- |e VerfasserIn |0 (DE-588)1173444157 |0 (DE-627)1043277242 |0 (DE-576)515261769 |4 aut | |
| 700 | 1 | |a Pawlowski, Jan M. |d 1965- |e VerfasserIn |0 (DE-588)1047077388 |0 (DE-627)777525925 |0 (DE-576)400331381 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Physical review |d Ridge, NY : American Physical Society, 2016 |g 107(2023), 3, Artikel-ID 034506, Seite 1-22 |h Online-Ressource |w (DE-627)846313510 |w (DE-600)2844732-3 |w (DE-576)454495811 |x 2470-0029 |7 nnas |a Confinement in non-Abelian lattice gauge theory via persistent homology |
| 773 | 1 | 8 | |g volume:107 |g year:2023 |g number:3 |g elocationid:034506 |g pages:1-22 |g extent:22 |a Confinement in non-Abelian lattice gauge theory via persistent homology |
| 856 | 4 | 0 | |u https://doi.org/10.1103/PhysRevD.107.034506 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://link.aps.org/doi/10.1103/PhysRevD.107.034506 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20230801 | ||
| 993 | |a Article | ||
| 994 | |a 2023 | ||
| 998 | |g 1047077388 |a Pawlowski, Jan M. |m 1047077388:Pawlowski, Jan M. |d 130000 |d 130300 |e 130000PP1047077388 |e 130300PP1047077388 |k 0/130000/ |k 1/130000/130300/ |p 3 |y j | ||
| 998 | |g 1173444157 |a Urban, Julian M. |m 1173444157:Urban, Julian M. |d 700000 |d 728500 |e 700000PU1173444157 |e 728500PU1173444157 |k 0/700000/ |k 1/700000/728500/ |p 2 | ||
| 998 | |g 1182934374 |a Spitz, Daniel |m 1182934374:Spitz, Daniel |d 130000 |d 130300 |d 700000 |d 728500 |e 130000PS1182934374 |e 130300PS1182934374 |e 700000PS1182934374 |e 728500PS1182934374 |k 0/130000/ |k 1/130000/130300/ |k 0/700000/ |k 1/700000/728500/ |p 1 |x j | ||
| 999 | |a KXP-PPN1853992984 |e 4361689113 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"16 February 2023"}],"id":{"eki":["1853992984"],"doi":["10.1103/PhysRevD.107.034506"]},"name":{"displayForm":["Daniel Spitz, Julian M. Urban, and Jan M. Pawlowski"]},"physDesc":[{"extent":"22 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["published by American Physical Society"]},"origin":[{"publisherPlace":"Ridge, NY","dateIssuedKey":"2016","publisher":"American Physical Society","dateIssuedDisp":"2016-"}],"id":{"issn":["2470-0029"],"eki":["846313510"],"zdb":["2844732-3"]},"disp":"Confinement in non-Abelian lattice gauge theory via persistent homologyPhysical review","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 14.03.2023"],"language":["eng"],"corporate":[{"role":"isb","display":"American Physical Society","roleDisplay":"Herausgebendes Organ"}],"recId":"846313510","pubHistory":["3rd series, volume 93, number 1 (January 2016)-"],"titleAlt":[{"title":"Particles, fields, gravitation, and cosmology"}],"part":{"extent":"22","volume":"107","text":"107(2023), 3, Artikel-ID 034506, Seite 1-22","pages":"1-22","issue":"3","year":"2023"},"title":[{"title":"Physical review","title_sort":"Physical review"}]}],"title":[{"title":"Confinement in non-Abelian lattice gauge theory via persistent homology","title_sort":"Confinement in non-Abelian lattice gauge theory via persistent homology"}],"person":[{"family":"Spitz","given":"Daniel","roleDisplay":"VerfasserIn","display":"Spitz, Daniel","role":"aut"},{"role":"aut","display":"Urban, Julian M.","roleDisplay":"VerfasserIn","given":"Julian M.","family":"Urban"},{"given":"Jan M.","family":"Pawlowski","role":"aut","display":"Pawlowski, Jan M.","roleDisplay":"VerfasserIn"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 01.08.2023"],"language":["eng"],"recId":"1853992984"} | ||
| SRT | |a SPITZDANIECONFINEMEN1620 | ||