Confinement in non-Abelian lattice gauge theory via persistent homology

We investigate the structure of confining and deconfining phases in SU(2) lattice gauge theory via persistent homology, which gives us access to the topology of a hierarchy of combinatorial objects constructed from given data. Specifically, we use filtrations by traced Polyakov loops, topological de...

Full description

Saved in:
Bibliographic Details
Main Authors: Spitz, Daniel (Author) , Urban, Julian M. (Author) , Pawlowski, Jan M. (Author)
Format: Article (Journal)
Language:English
Published: 16 February 2023
In: Physical review
Year: 2023, Volume: 107, Issue: 3, Pages: 1-22
ISSN:2470-0029
DOI:10.1103/PhysRevD.107.034506
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevD.107.034506
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.107.034506
Get full text
Author Notes:Daniel Spitz, Julian M. Urban, and Jan M. Pawlowski

MARC

LEADER 00000caa a2200000 c 4500
001 1853992984
003 DE-627
005 20240307064338.0
007 cr uuu---uuuuu
008 230801s2023 xx |||||o 00| ||eng c
024 7 |a 10.1103/PhysRevD.107.034506  |2 doi 
035 |a (DE-627)1853992984 
035 |a (DE-599)KXP1853992984 
035 |a (OCoLC)1425213895 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Spitz, Daniel  |d 1994-  |e VerfasserIn  |0 (DE-588)1182934374  |0 (DE-627)1662935005  |4 aut 
245 1 0 |a Confinement in non-Abelian lattice gauge theory via persistent homology  |c Daniel Spitz, Julian M. Urban, and Jan M. Pawlowski 
264 1 |c 16 February 2023 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 01.08.2023 
520 |a We investigate the structure of confining and deconfining phases in SU(2) lattice gauge theory via persistent homology, which gives us access to the topology of a hierarchy of combinatorial objects constructed from given data. Specifically, we use filtrations by traced Polyakov loops, topological densities, holonomy Lie algebra fields, as well as electric and magnetic fields. This allows for a comprehensive picture of confinement. In particular, topological densities form spatial lumps which show signatures of the classical probability distribution of instanton-dyons. Signatures of well-separated dyons located at random positions are encoded in holonomy Lie algebra fields, following the semiclassical temperature dependence of the instanton appearance probability. Debye screening discriminating between electric and magnetic fields is visible in persistent homology and pronounced at large gauge coupling. All employed constructions are gauge-invariant without a priori assumptions on the configurations under study. This work showcases the versatility of persistent homology for statistical and quantum physics studies, barely explored to date. 
700 1 |a Urban, Julian M.  |d 1994-  |e VerfasserIn  |0 (DE-588)1173444157  |0 (DE-627)1043277242  |0 (DE-576)515261769  |4 aut 
700 1 |a Pawlowski, Jan M.  |d 1965-  |e VerfasserIn  |0 (DE-588)1047077388  |0 (DE-627)777525925  |0 (DE-576)400331381  |4 aut 
773 0 8 |i Enthalten in  |t Physical review  |d Ridge, NY : American Physical Society, 2016  |g 107(2023), 3, Artikel-ID 034506, Seite 1-22  |h Online-Ressource  |w (DE-627)846313510  |w (DE-600)2844732-3  |w (DE-576)454495811  |x 2470-0029  |7 nnas  |a Confinement in non-Abelian lattice gauge theory via persistent homology 
773 1 8 |g volume:107  |g year:2023  |g number:3  |g elocationid:034506  |g pages:1-22  |g extent:22  |a Confinement in non-Abelian lattice gauge theory via persistent homology 
856 4 0 |u https://doi.org/10.1103/PhysRevD.107.034506  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://link.aps.org/doi/10.1103/PhysRevD.107.034506  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230801 
993 |a Article 
994 |a 2023 
998 |g 1047077388  |a Pawlowski, Jan M.  |m 1047077388:Pawlowski, Jan M.  |d 130000  |d 130300  |e 130000PP1047077388  |e 130300PP1047077388  |k 0/130000/  |k 1/130000/130300/  |p 3  |y j 
998 |g 1173444157  |a Urban, Julian M.  |m 1173444157:Urban, Julian M.  |d 700000  |d 728500  |e 700000PU1173444157  |e 728500PU1173444157  |k 0/700000/  |k 1/700000/728500/  |p 2 
998 |g 1182934374  |a Spitz, Daniel  |m 1182934374:Spitz, Daniel  |d 130000  |d 130300  |d 700000  |d 728500  |e 130000PS1182934374  |e 130300PS1182934374  |e 700000PS1182934374  |e 728500PS1182934374  |k 0/130000/  |k 1/130000/130300/  |k 0/700000/  |k 1/700000/728500/  |p 1  |x j 
999 |a KXP-PPN1853992984  |e 4361689113 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"16 February 2023"}],"id":{"eki":["1853992984"],"doi":["10.1103/PhysRevD.107.034506"]},"name":{"displayForm":["Daniel Spitz, Julian M. Urban, and Jan M. Pawlowski"]},"physDesc":[{"extent":"22 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["published by American Physical Society"]},"origin":[{"publisherPlace":"Ridge, NY","dateIssuedKey":"2016","publisher":"American Physical Society","dateIssuedDisp":"2016-"}],"id":{"issn":["2470-0029"],"eki":["846313510"],"zdb":["2844732-3"]},"disp":"Confinement in non-Abelian lattice gauge theory via persistent homologyPhysical review","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 14.03.2023"],"language":["eng"],"corporate":[{"role":"isb","display":"American Physical Society","roleDisplay":"Herausgebendes Organ"}],"recId":"846313510","pubHistory":["3rd series, volume 93, number 1 (January 2016)-"],"titleAlt":[{"title":"Particles, fields, gravitation, and cosmology"}],"part":{"extent":"22","volume":"107","text":"107(2023), 3, Artikel-ID 034506, Seite 1-22","pages":"1-22","issue":"3","year":"2023"},"title":[{"title":"Physical review","title_sort":"Physical review"}]}],"title":[{"title":"Confinement in non-Abelian lattice gauge theory via persistent homology","title_sort":"Confinement in non-Abelian lattice gauge theory via persistent homology"}],"person":[{"family":"Spitz","given":"Daniel","roleDisplay":"VerfasserIn","display":"Spitz, Daniel","role":"aut"},{"role":"aut","display":"Urban, Julian M.","roleDisplay":"VerfasserIn","given":"Julian M.","family":"Urban"},{"given":"Jan M.","family":"Pawlowski","role":"aut","display":"Pawlowski, Jan M.","roleDisplay":"VerfasserIn"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 01.08.2023"],"language":["eng"],"recId":"1853992984"} 
SRT |a SPITZDANIECONFINEMEN1620