Characterizing M-estimators

We characterize the full classes of M-estimators for semiparametric models of general functionals by formally connecting the theory of consistent loss functions from forecast evaluation with the theory of M-estimation. This novel characterization result allows us to leverage existing results on loss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dimitriadis, Timo (VerfasserIn) , Fissler, Tobias (VerfasserIn) , Ziegel, Johanna (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 8 May 2023
In: Biometrika
Year: 2023, Pages: 1-8
ISSN:1464-3510
DOI:10.1093/biomet/asad026
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1093/biomet/asad026
Volltext
Verfasserangaben:by Timo Dimitriadis, Tobias Fissler and Johanna Ziegel
Beschreibung
Zusammenfassung:We characterize the full classes of M-estimators for semiparametric models of general functionals by formally connecting the theory of consistent loss functions from forecast evaluation with the theory of M-estimation. This novel characterization result allows us to leverage existing results on loss functions known from the literature on forecast evaluation in estimation theory. We exemplify advantageous implications for the fields of robust, efficient, equivariant and Pareto-optimal M-estimation.
Beschreibung:Gesehen am 01.08.2023
Beschreibung:Online Resource
ISSN:1464-3510
DOI:10.1093/biomet/asad026