dsMTL: a computational framework for privacy-preserving, distributed multi-task machine learning : data and text mining

In multi-cohort machine learning studies, it is critical to differentiate between effects that are reproducible across cohorts and those that are cohort-specific. Multi-task learning (MTL) is a machine learning approach that facilitates this differentiation through the simultaneous learning of predi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cao, Han (VerfasserIn) , Zhang, Youcheng (VerfasserIn) , Baumbach, Jan (VerfasserIn) , Burton, Paul R. (VerfasserIn) , Dwyer, Dominic (VerfasserIn) , Koutsouleris, Nikolaos (VerfasserIn) , Matschinske, Julian (VerfasserIn) , Marcon, Yannick (VerfasserIn) , Rajan, Sivanesan (VerfasserIn) , Rieger, Thilo (VerfasserIn) , Ryser-Welch, Patricia (VerfasserIn) , Späth, Julian (VerfasserIn) , Herrmann, Carl (VerfasserIn) , Schwarz, Emanuel (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 08 September 2022
In: Bioinformatics
Year: 2022, Jahrgang: 38, Heft: 21, Pages: 4919-4926
ISSN:1367-4811
DOI:10.1093/bioinformatics/btac616
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1093/bioinformatics/btac616
Verlag, kostenfrei, Volltext: https://academic.oup.com/bioinformatics/article/38/21/4919/6694043?login=true
Volltext
Verfasserangaben:Han Cao, Youcheng Zhang, Jan Baumbach, Paul R Burton, Dominic Dwyer, Nikolaos Koutsouleris, Julian Matschinske, Yannick Marcon, Sivanesan Rajan, Thilo Rieg, Patricia Ryser-Welch, Julian Späth, The COMMITMENT Consortium, Carl Herrmann and Emanuel Schwarz

MARC

LEADER 00000caa a2200000 c 4500
001 1854037579
003 DE-627
005 20241031082121.0
007 cr uuu---uuuuu
008 230801s2022 xx |||||o 00| ||eng c
024 7 |a 10.1093/bioinformatics/btac616  |2 doi 
035 |a (DE-627)1854037579 
035 |a (DE-599)KXP1854037579 
035 |a (OCoLC)1425217077 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Cao, Han  |d 1987-  |e VerfasserIn  |0 (DE-588)1156200083  |0 (DE-627)1018678115  |0 (DE-576)502030283  |4 aut 
245 1 0 |a dsMTL  |b a computational framework for privacy-preserving, distributed multi-task machine learning : data and text mining  |c Han Cao, Youcheng Zhang, Jan Baumbach, Paul R Burton, Dominic Dwyer, Nikolaos Koutsouleris, Julian Matschinske, Yannick Marcon, Sivanesan Rajan, Thilo Rieg, Patricia Ryser-Welch, Julian Späth, The COMMITMENT Consortium, Carl Herrmann and Emanuel Schwarz 
264 1 |c 08 September 2022 
300 |a 8 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 01.08.2023 
520 |a In multi-cohort machine learning studies, it is critical to differentiate between effects that are reproducible across cohorts and those that are cohort-specific. Multi-task learning (MTL) is a machine learning approach that facilitates this differentiation through the simultaneous learning of prediction tasks across cohorts. Since multi-cohort data can often not be combined into a single storage solution, there would be the substantial utility of an MTL application for geographically distributed data sources.Here, we describe the development of ‘dsMTL’, a computational framework for privacy-preserving, distributed multi-task machine learning that includes three supervised and one unsupervised algorithms. First, we derive the theoretical properties of these methods and the relevant machine learning workflows to ensure the validity of the software implementation. Second, we implement dsMTL as a library for the R programming language, building on the DataSHIELD platform that supports the federated analysis of sensitive individual-level data. Third, we demonstrate the applicability of dsMTL for comorbidity modeling in distributed data. We show that comorbidity modeling using dsMTL outperformed conventional, federated machine learning, as well as the aggregation of multiple models built on the distributed datasets individually. The application of dsMTL was computationally efficient and highly scalable when applied to moderate-size (n < 500), real expression data given the actual network latency.dsMTL is freely available at https://github.com/transbioZI/dsMTLBase (server-side package) and https://github.com/transbioZI/dsMTLClient (client-side package).Supplementary data are available at Bioinformatics online. 
700 1 |a Zhang, Youcheng  |d 1993-  |e VerfasserIn  |0 (DE-588)1346617813  |0 (DE-627)1907193308  |4 aut 
700 1 |a Baumbach, Jan  |e VerfasserIn  |4 aut 
700 1 |a Burton, Paul R.  |e VerfasserIn  |4 aut 
700 1 |a Dwyer, Dominic  |e VerfasserIn  |4 aut 
700 1 |a Koutsouleris, Nikolaos  |d 1976-  |e VerfasserIn  |0 (DE-588)131554948  |0 (DE-627)510698646  |0 (DE-576)29858283X  |4 aut 
700 1 |a Matschinske, Julian  |e VerfasserIn  |4 aut 
700 1 |a Marcon, Yannick  |e VerfasserIn  |4 aut 
700 1 |a Rajan, Sivanesan  |e VerfasserIn  |4 aut 
700 1 |a Rieger, Thilo  |d 1976-  |e VerfasserIn  |0 (DE-588)131512536  |0 (DE-627)510159923  |0 (DE-576)250757931  |4 aut 
700 1 |a Ryser-Welch, Patricia  |e VerfasserIn  |4 aut 
700 1 |a Späth, Julian  |e VerfasserIn  |4 aut 
700 1 |a Herrmann, Carl  |d 1971-  |e VerfasserIn  |0 (DE-588)1081750952  |0 (DE-627)846593858  |0 (DE-576)454763409  |4 aut 
700 1 |a Schwarz, Emanuel  |e VerfasserIn  |0 (DE-588)1055051260  |0 (DE-627)792581040  |0 (DE-576)411121596  |4 aut 
773 0 8 |i Enthalten in  |t Bioinformatics  |d Oxford : Oxford Univ. Press, 1998  |g 38(2022), 21 vom: Nov., Seite 4919-4926  |h Online-Ressource  |w (DE-627)266884857  |w (DE-600)1468345-3  |w (DE-576)079420133  |x 1367-4811  |7 nnas  |a dsMTL a computational framework for privacy-preserving, distributed multi-task machine learning : data and text mining 
773 1 8 |g volume:38  |g year:2022  |g number:21  |g month:11  |g pages:4919-4926  |g extent:8  |a dsMTL a computational framework for privacy-preserving, distributed multi-task machine learning : data and text mining 
856 4 0 |u https://doi.org/10.1093/bioinformatics/btac616  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://academic.oup.com/bioinformatics/article/38/21/4919/6694043?login=true  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20230801 
993 |a Article 
994 |a 2022 
998 |g 1055051260  |a Schwarz, Emanuel  |m 1055051260:Schwarz, Emanuel  |d 60000  |e 60000PS1055051260  |k 0/60000/  |p 14  |y j 
998 |g 1081750952  |a Herrmann, Carl  |m 1081750952:Herrmann, Carl  |d 140000  |e 140000PH1081750952  |k 0/140000/  |p 13 
998 |g 1346617813  |a Zhang, Youcheng  |m 1346617813:Zhang, Youcheng  |d 50000  |e 50000PZ1346617813  |k 0/50000/  |p 2 
998 |g 1156200083  |a Cao, Han  |m 1156200083:Cao, Han  |d 60000  |e 60000PC1156200083  |k 0/60000/  |p 1  |x j 
999 |a KXP-PPN1854037579  |e 4361837597 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"8 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Oxford","dateIssuedDisp":"1998-","dateIssuedKey":"1998","publisher":"Oxford Univ. Press"}],"id":{"eki":["266884857"],"zdb":["1468345-3"],"issn":["1367-4811"]},"note":["Gesehen am 26.07.2023","Fortsetzung der Druck-Ausgabe"],"disp":"dsMTL a computational framework for privacy-preserving, distributed multi-task machine learning : data and text miningBioinformatics","type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"recId":"266884857","pubHistory":["14.1998 -"],"titleAlt":[{"title":"Bioinformatics online"}],"part":{"text":"38(2022), 21 vom: Nov., Seite 4919-4926","volume":"38","extent":"8","year":"2022","pages":"4919-4926","issue":"21"},"title":[{"title_sort":"Bioinformatics","title":"Bioinformatics"}]}],"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"08 September 2022"}],"id":{"eki":["1854037579"],"doi":["10.1093/bioinformatics/btac616"]},"name":{"displayForm":["Han Cao, Youcheng Zhang, Jan Baumbach, Paul R Burton, Dominic Dwyer, Nikolaos Koutsouleris, Julian Matschinske, Yannick Marcon, Sivanesan Rajan, Thilo Rieg, Patricia Ryser-Welch, Julian Späth, The COMMITMENT Consortium, Carl Herrmann and Emanuel Schwarz"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 01.08.2023"],"recId":"1854037579","language":["eng"],"title":[{"title_sort":"dsMTL","title":"dsMTL","subtitle":"a computational framework for privacy-preserving, distributed multi-task machine learning : data and text mining"}],"person":[{"family":"Cao","given":"Han","roleDisplay":"VerfasserIn","display":"Cao, Han","role":"aut"},{"family":"Zhang","given":"Youcheng","display":"Zhang, Youcheng","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Jan","family":"Baumbach","role":"aut","roleDisplay":"VerfasserIn","display":"Baumbach, Jan"},{"roleDisplay":"VerfasserIn","display":"Burton, Paul R.","role":"aut","family":"Burton","given":"Paul R."},{"role":"aut","roleDisplay":"VerfasserIn","display":"Dwyer, Dominic","given":"Dominic","family":"Dwyer"},{"role":"aut","display":"Koutsouleris, Nikolaos","roleDisplay":"VerfasserIn","given":"Nikolaos","family":"Koutsouleris"},{"given":"Julian","family":"Matschinske","role":"aut","roleDisplay":"VerfasserIn","display":"Matschinske, Julian"},{"given":"Yannick","family":"Marcon","role":"aut","roleDisplay":"VerfasserIn","display":"Marcon, Yannick"},{"display":"Rajan, Sivanesan","roleDisplay":"VerfasserIn","role":"aut","family":"Rajan","given":"Sivanesan"},{"family":"Rieger","given":"Thilo","roleDisplay":"VerfasserIn","display":"Rieger, Thilo","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Ryser-Welch, Patricia","role":"aut","family":"Ryser-Welch","given":"Patricia"},{"given":"Julian","family":"Späth","role":"aut","roleDisplay":"VerfasserIn","display":"Späth, Julian"},{"roleDisplay":"VerfasserIn","display":"Herrmann, Carl","role":"aut","family":"Herrmann","given":"Carl"},{"roleDisplay":"VerfasserIn","display":"Schwarz, Emanuel","role":"aut","family":"Schwarz","given":"Emanuel"}]} 
SRT |a CAOHANZHANDSMTL0820