Deep learning approach to predict sentinel lymph node status directly from routine histology of primary melanoma tumours

Aim - Sentinel lymph node status is a central prognostic factor for melanomas. However, the surgical excision involves some risks for affected patients. In this study, we therefore aimed to develop a digital biomarker that can predict lymph node metastasis non-invasively from digitised H&E slide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Brinker, Titus Josef (VerfasserIn) , Kiehl, Lennard (VerfasserIn) , Schmitt, Max (VerfasserIn) , Jutzi, Tanja (VerfasserIn) , Krieghoff-Henning, Eva (VerfasserIn) , Krahl, Dieter (VerfasserIn) , Kutzner, Heinz (VerfasserIn) , Gholam, Patrick (VerfasserIn) , Haferkamp, Sebastian (VerfasserIn) , Klode, Joachim (VerfasserIn) , Schadendorf, Dirk (VerfasserIn) , Hekler, Achim (VerfasserIn) , Fröhling, Stefan (VerfasserIn) , Kather, Jakob Nikolas (VerfasserIn) , Haggenmüller, Sarah (VerfasserIn) , Kalle, Christof von (VerfasserIn) , Heppt, Markus V. (VerfasserIn) , Hilke, Franz (VerfasserIn) , Ghoreschi, Kamran (VerfasserIn) , Tiemann, Markus (VerfasserIn) , Wehkamp, Ulrike (VerfasserIn) , Hauschild, Axel (VerfasserIn) , Weichenthal, Michael (VerfasserIn) , Utikal, Jochen (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: September 2021
In: European journal of cancer
Year: 2021, Jahrgang: 154, Pages: 227-234
ISSN:1879-0852
DOI:10.1016/j.ejca.2021.05.026
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.ejca.2021.05.026
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S095980492100335X
Volltext
Verfasserangaben:Titus J. Brinker, Lennard Kiehl, Max Schmitt, Tanja B. Jutzi, Eva I. Krieghoff-Henning, Dieter Krahl, Heinz Kutzner, Patrick Gholam, Sebastian Haferkamp, Joachim Klode, Dirk Schadendorf, Achim Hekler, Stefan Fröhling, Jakob N. Kather, Sarah Haggenmüller, Christof von Kalle, Markus Heppt, Franz Hilke, Kamran Ghoreschi, Markus Tiemann, Ulrike Wehkamp, Axel Hauschild, Michael Weichenthal, Jochen S. Utikal

MARC

LEADER 00000caa a2200000 c 4500
001 1854260847
003 DE-627
005 20251023161032.0
007 cr uuu---uuuuu
008 230803s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ejca.2021.05.026  |2 doi 
035 |a (DE-627)1854260847 
035 |a (DE-599)KXP1854260847 
035 |a (OCoLC)1425217944 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Brinker, Titus Josef  |d 1990-  |e VerfasserIn  |0 (DE-588)1156309395  |0 (DE-627)1018860487  |0 (DE-576)502097434  |4 aut 
245 1 0 |a Deep learning approach to predict sentinel lymph node status directly from routine histology of primary melanoma tumours  |c Titus J. Brinker, Lennard Kiehl, Max Schmitt, Tanja B. Jutzi, Eva I. Krieghoff-Henning, Dieter Krahl, Heinz Kutzner, Patrick Gholam, Sebastian Haferkamp, Joachim Klode, Dirk Schadendorf, Achim Hekler, Stefan Fröhling, Jakob N. Kather, Sarah Haggenmüller, Christof von Kalle, Markus Heppt, Franz Hilke, Kamran Ghoreschi, Markus Tiemann, Ulrike Wehkamp, Axel Hauschild, Michael Weichenthal, Jochen S. Utikal 
264 1 |c September 2021 
300 |a 8 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Available online 20 July 2021 
500 |a Gesehen am 03.08.2023 
520 |a Aim - Sentinel lymph node status is a central prognostic factor for melanomas. However, the surgical excision involves some risks for affected patients. In this study, we therefore aimed to develop a digital biomarker that can predict lymph node metastasis non-invasively from digitised H&E slides of primary melanoma tumours. - Methods - A total of 415 H&E slides from primary melanoma tumours with known sentinel node (SN) status from three German university hospitals and one private pathological practice were digitised (150 SN positive/265 SN negative). Two hundred ninety-one slides were used to train artificial neural networks (ANNs). The remaining 124 slides were used to test the ability of the ANNs to predict sentinel status. ANNs were trained and/or tested on data sets that were matched or not matched between SN-positive and SN-negative cases for patient age, ulceration, and tumour thickness, factors that are known to correlate with lymph node status. - Results - The best accuracy was achieved by an ANN that was trained and tested on unmatched cases (61.8% ± 0.2%) area under the receiver operating characteristic (AUROC). In contrast, ANNs that were trained and/or tested on matched cases achieved (55.0% ± 3.5%) AUROC or less. - Conclusion - Our results indicate that the image classifier can predict lymph node status to some, albeit so far not clinically relevant, extent. It may do so by mostly detecting equivalents of factors on histological slides that are already known to correlate with lymph node status. Our results provide a basis for future research with larger data cohorts. 
650 4 |a Artificial intelligence 
650 4 |a Biomarkers 
650 4 |a Histology 
650 4 |a Lymph node biopsy 
650 4 |a Machine learning 
650 4 |a Melanoma 
650 4 |a Neural network model 
650 4 |a Pathology 
650 4 |a Sentinel 
650 4 |a Skin cancer 
700 1 |a Kiehl, Lennard  |e VerfasserIn  |0 (DE-588)1250101042  |0 (DE-627)1786951223  |4 aut 
700 1 |a Schmitt, Max  |e VerfasserIn  |0 (DE-588)1236577469  |0 (DE-627)1761961586  |4 aut 
700 1 |a Jutzi, Tanja  |e VerfasserIn  |0 (DE-588)1234604825  |0 (DE-627)1759447528  |4 aut 
700 1 |a Krieghoff-Henning, Eva  |d 1976-  |e VerfasserIn  |0 (DE-588)132407914  |0 (DE-627)52267786X  |0 (DE-576)299126706  |4 aut 
700 1 |a Krahl, Dieter  |e VerfasserIn  |0 (DE-588)1304900193  |0 (DE-627)1860707416  |4 aut 
700 1 |a Kutzner, Heinz  |e VerfasserIn  |0 (DE-588)1207300756  |0 (DE-627)1693511363  |4 aut 
700 1 |a Gholam, Patrick  |d 1977-  |e VerfasserIn  |0 (DE-588)130316369  |0 (DE-627)497976684  |0 (DE-576)298123282  |4 aut 
700 1 |a Haferkamp, Sebastian  |d 1978-  |e VerfasserIn  |0 (DE-588)132018330  |0 (DE-627)51684296X  |0 (DE-576)298896044  |4 aut 
700 1 |a Klode, Joachim  |d 1974-  |e VerfasserIn  |0 (DE-588)137117906  |0 (DE-627)589937316  |0 (DE-576)302153314  |4 aut 
700 1 |a Schadendorf, Dirk  |d 1960-  |e VerfasserIn  |0 (DE-588)11142576X  |0 (DE-627)499566076  |0 (DE-576)289702275  |4 aut 
700 1 |a Hekler, Achim  |e VerfasserIn  |0 (DE-588)1196829314  |0 (DE-627)1678721344  |4 aut 
700 1 |a Fröhling, Stefan  |d 1969-  |e VerfasserIn  |0 (DE-588)120890046  |0 (DE-627)080950302  |0 (DE-576)188733930  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
700 1 |a Haggenmüller, Sarah  |d 1995-  |e VerfasserIn  |0 (DE-588)1231946709  |0 (DE-627)1755618042  |4 aut 
700 1 |a Kalle, Christof von  |d 1962-  |e VerfasserIn  |0 (DE-588)1036481115  |0 (DE-627)75107926X  |0 (DE-576)168957396  |4 aut 
700 1 |a Heppt, Markus V.  |d 1987-  |e VerfasserIn  |0 (DE-588)1072242346  |0 (DE-627)827081111  |0 (DE-576)43371767X  |4 aut 
700 1 |a Hilke, Franz  |e VerfasserIn  |0 (DE-588)1230558411  |0 (DE-627)1753030498  |4 aut 
700 1 |a Ghoreschi, Kamran  |d 1970-  |e VerfasserIn  |0 (DE-588)124466079  |0 (DE-627)363367357  |0 (DE-576)294184988  |4 aut 
700 1 |a Tiemann, Markus  |e VerfasserIn  |0 (DE-588)1235726401  |0 (DE-627)1760770388  |4 aut 
700 1 |a Wehkamp, Ulrike  |d 1980-  |e VerfasserIn  |0 (DE-588)133615782  |0 (DE-627)69164506X  |0 (DE-576)299972542  |4 aut 
700 1 |a Hauschild, Axel  |e VerfasserIn  |0 (DE-588)120701200  |0 (DE-627)080838448  |0 (DE-576)292346670  |4 aut 
700 1 |a Weichenthal, Michael  |e VerfasserIn  |0 (DE-588)140953272  |0 (DE-627)623003848  |0 (DE-576)321514157  |4 aut 
700 1 |a Utikal, Jochen  |d 1974-  |e VerfasserIn  |0 (DE-588)1026463750  |0 (DE-627)726765015  |0 (DE-576)371816580  |4 aut 
773 0 8 |i Enthalten in  |t European journal of cancer  |d Amsterdam [u.a.] : Elsevier, 1992  |g 154(2021) vom: Sept., Seite 227-234  |w (DE-627)266883400  |w (DE-600)1468190-0  |w (DE-576)090954173  |x 1879-0852  |7 nnas  |a Deep learning approach to predict sentinel lymph node status directly from routine histology of primary melanoma tumours 
773 1 8 |g volume:154  |g year:2021  |g month:09  |g pages:227-234  |g extent:8  |a Deep learning approach to predict sentinel lymph node status directly from routine histology of primary melanoma tumours 
856 4 0 |u https://doi.org/10.1016/j.ejca.2021.05.026  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S095980492100335X  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230803 
993 |a Article 
994 |a 2021 
998 |g 1026463750  |a Utikal, Jochen  |m 1026463750:Utikal, Jochen  |d 60000  |e 60000PU1026463750  |k 0/60000/  |p 24  |y j 
998 |g 1036481115  |a Kalle, Christof von  |m 1036481115:Kalle, Christof von  |d 50000  |e 50000PK1036481115  |k 0/50000/  |p 16 
998 |g 1231946709  |a Haggenmüller, Sarah  |m 1231946709:Haggenmüller, Sarah  |d 60000  |e 60000PH1231946709  |k 0/60000/  |p 15 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 14 
998 |g 120890046  |a Fröhling, Stefan  |m 120890046:Fröhling, Stefan  |d 50000  |e 50000PF120890046  |k 0/50000/  |p 13 
998 |g 11142576X  |a Schadendorf, Dirk  |m 11142576X:Schadendorf, Dirk  |d 50000  |e 50000PS11142576X  |k 0/50000/  |p 11 
998 |g 130316369  |a Gholam, Patrick  |m 130316369:Gholam, Patrick  |d 910000  |d 911300  |d 50000  |e 910000PG130316369  |e 911300PG130316369  |e 50000PG130316369  |k 0/910000/  |k 1/910000/911300/  |k 0/50000/  |p 8 
998 |g 1156309395  |a Brinker, Titus Josef  |m 1156309395:Brinker, Titus Josef  |d 50000  |e 50000PB1156309395  |k 0/50000/  |p 1  |x j 
999 |a KXP-PPN1854260847  |e 4362702326 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"display":"Brinker, Titus Josef","given":"Titus Josef","role":"aut","family":"Brinker"},{"role":"aut","given":"Lennard","family":"Kiehl","display":"Kiehl, Lennard"},{"role":"aut","given":"Max","family":"Schmitt","display":"Schmitt, Max"},{"given":"Tanja","role":"aut","family":"Jutzi","display":"Jutzi, Tanja"},{"family":"Krieghoff-Henning","role":"aut","given":"Eva","display":"Krieghoff-Henning, Eva"},{"display":"Krahl, Dieter","family":"Krahl","role":"aut","given":"Dieter"},{"display":"Kutzner, Heinz","family":"Kutzner","role":"aut","given":"Heinz"},{"role":"aut","given":"Patrick","family":"Gholam","display":"Gholam, Patrick"},{"family":"Haferkamp","given":"Sebastian","role":"aut","display":"Haferkamp, Sebastian"},{"display":"Klode, Joachim","given":"Joachim","role":"aut","family":"Klode"},{"family":"Schadendorf","role":"aut","given":"Dirk","display":"Schadendorf, Dirk"},{"role":"aut","given":"Achim","family":"Hekler","display":"Hekler, Achim"},{"family":"Fröhling","role":"aut","given":"Stefan","display":"Fröhling, Stefan"},{"display":"Kather, Jakob Nikolas","given":"Jakob Nikolas","role":"aut","family":"Kather"},{"display":"Haggenmüller, Sarah","family":"Haggenmüller","given":"Sarah","role":"aut"},{"family":"Kalle","role":"aut","given":"Christof von","display":"Kalle, Christof von"},{"display":"Heppt, Markus V.","family":"Heppt","role":"aut","given":"Markus V."},{"family":"Hilke","role":"aut","given":"Franz","display":"Hilke, Franz"},{"display":"Ghoreschi, Kamran","family":"Ghoreschi","given":"Kamran","role":"aut"},{"display":"Tiemann, Markus","role":"aut","given":"Markus","family":"Tiemann"},{"family":"Wehkamp","given":"Ulrike","role":"aut","display":"Wehkamp, Ulrike"},{"given":"Axel","role":"aut","family":"Hauschild","display":"Hauschild, Axel"},{"display":"Weichenthal, Michael","family":"Weichenthal","given":"Michael","role":"aut"},{"family":"Utikal","given":"Jochen","role":"aut","display":"Utikal, Jochen"}],"relHost":[{"origin":[{"publisher":"Elsevier ; Pergamon Press","publisherPlace":"Amsterdam [u.a.] ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1992","dateIssuedDisp":"1992-"}],"title":[{"title_sort":"European journal of cancer","title":"European journal of cancer"}],"note":["Gesehen am 21.03.24","Ungezählte Beil.: Supplement"],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"recId":"266883400","disp":"Deep learning approach to predict sentinel lymph node status directly from routine histology of primary melanoma tumoursEuropean journal of cancer","titleAlt":[{"title":"EJC online"}],"pubHistory":["28.1992 -"],"corporate":[{"display":"European Organization for Research on Treatment of Cancer","role":"isb"},{"role":"isb","display":"European Association for Cancer Research"},{"display":"European School of Oncology","role":"isb"}],"part":{"extent":"8","text":"154(2021) vom: Sept., Seite 227-234","volume":"154","year":"2021","pages":"227-234"},"id":{"zdb":["1468190-0"],"issn":["1879-0852"],"eki":["266883400"]}}],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"September 2021"}],"note":["Available online 20 July 2021","Gesehen am 03.08.2023"],"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title_sort":"Deep learning approach to predict sentinel lymph node status directly from routine histology of primary melanoma tumours","title":"Deep learning approach to predict sentinel lymph node status directly from routine histology of primary melanoma tumours"}],"physDesc":[{"extent":"8 S."}],"recId":"1854260847","name":{"displayForm":["Titus J. Brinker, Lennard Kiehl, Max Schmitt, Tanja B. Jutzi, Eva I. Krieghoff-Henning, Dieter Krahl, Heinz Kutzner, Patrick Gholam, Sebastian Haferkamp, Joachim Klode, Dirk Schadendorf, Achim Hekler, Stefan Fröhling, Jakob N. Kather, Sarah Haggenmüller, Christof von Kalle, Markus Heppt, Franz Hilke, Kamran Ghoreschi, Markus Tiemann, Ulrike Wehkamp, Axel Hauschild, Michael Weichenthal, Jochen S. Utikal"]},"id":{"eki":["1854260847"],"doi":["10.1016/j.ejca.2021.05.026"]}} 
SRT |a BRINKERTITDEEPLEARNI2021