A joint quantile and expected shortfall regression framework
We introduce a novel regression framework which simultaneously models the quantile and the Expected Shortfall (ES) of a response variable given a set of covariates. This regression is based on strictly consistent loss functions for the pair consisting of the quantile and the ES, which allow for M- a...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
7 June 2019
|
| In: |
Electronic journal of statistics
Year: 2019, Volume: 13, Issue: 1, Pages: 1823-1871 |
| ISSN: | 1935-7524 |
| DOI: | 10.1214/19-EJS1560 |
| Online Access: | Verlag, kostenfrei, Volltext: https://doi.org/10.1214/19-EJS1560 Verlag, kostenfrei, Volltext: https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-13/issue-1/A-joint-quantile-and-expected-shortfall-regression-framework/10.1214/19-EJS1560.full |
| Author Notes: | Timo Dimitriadis and Sebastian Bayer |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1854442333 | ||
| 003 | DE-627 | ||
| 005 | 20240307095554.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 230807s2019 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1214/19-EJS1560 |2 doi | |
| 035 | |a (DE-627)1854442333 | ||
| 035 | |a (DE-599)KXP1854442333 | ||
| 035 | |a (OCoLC)1425217898 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 17 |2 sdnb | ||
| 100 | 1 | |a Dimitriadis, Timo |e VerfasserIn |0 (DE-588)1230883045 |0 (DE-627)1753224217 |4 aut | |
| 245 | 1 | 2 | |a A joint quantile and expected shortfall regression framework |c Timo Dimitriadis and Sebastian Bayer |
| 264 | 1 | |c 7 June 2019 | |
| 300 | |a 49 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 07.08.2023 | ||
| 520 | |a We introduce a novel regression framework which simultaneously models the quantile and the Expected Shortfall (ES) of a response variable given a set of covariates. This regression is based on strictly consistent loss functions for the pair consisting of the quantile and the ES, which allow for M- and Z-estimation of the joint regression parameters. We show consistency and asymptotic normality for both estimators under weak regularity conditions. The underlying loss functions depend on two specification functions, whose choices affect the properties of the resulting estimators. We find that the Z-estimator is numerically unstable and thus, we rely on M-estimation of the model parameters. Extensive simulations verify the asymptotic properties and analyze the small sample behavior of the M-estimator for different specification functions. This joint regression framework allows for various applications including estimating, forecasting and backtesting ES, which is particularly relevant in light of the recent introduction of the ES into the Basel Accords. We illustrate this through two exemplary empirical applications in forecasting and forecast combination of the ES. | ||
| 650 | 4 | |a expected shortfall | |
| 650 | 4 | |a joint elicitability | |
| 650 | 4 | |a joint regression | |
| 650 | 4 | |a M-estimation | |
| 650 | 4 | |a Quantile regression | |
| 700 | 1 | |a Bayer, Sebastian |e VerfasserIn |0 (DE-588)1206594608 |0 (DE-627)1692670875 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Electronic journal of statistics |d Ithaca, NY : Cornell University Library, 2007 |g 13(2019), 1, Seite 1823-1871 |h Online-Ressource |w (DE-627)538998830 |w (DE-600)2381001-4 |w (DE-576)28134714X |x 1935-7524 |7 nnas |a A joint quantile and expected shortfall regression framework |
| 773 | 1 | 8 | |g volume:13 |g year:2019 |g number:1 |g pages:1823-1871 |g extent:49 |a A joint quantile and expected shortfall regression framework |
| 856 | 4 | 0 | |u https://doi.org/10.1214/19-EJS1560 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-13/issue-1/A-joint-quantile-and-expected-shortfall-regression-framework/10.1214/19-EJS1560.full |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20230807 | ||
| 993 | |a Article | ||
| 994 | |a 2019 | ||
| 998 | |g 1230883045 |a Dimitriadis, Timo |m 1230883045:Dimitriadis, Timo |p 1 |x j | ||
| 999 | |a KXP-PPN1854442333 |e 4363431164 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 07.08.2023"],"recId":"1854442333","language":["eng"],"person":[{"role":"aut","display":"Dimitriadis, Timo","roleDisplay":"VerfasserIn","given":"Timo","family":"Dimitriadis"},{"family":"Bayer","given":"Sebastian","display":"Bayer, Sebastian","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"title":"A joint quantile and expected shortfall regression framework","title_sort":"joint quantile and expected shortfall regression framework"}],"physDesc":[{"extent":"49 S."}],"relHost":[{"id":{"issn":["1935-7524"],"zdb":["2381001-4"],"eki":["538998830"]},"origin":[{"dateIssuedDisp":"2007-","dateIssuedKey":"2007","publisher":"Cornell University Library","publisherPlace":"Ithaca, NY"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Electronic journal of statistics","subtitle":"EJS","title":"Electronic journal of statistics"}],"part":{"volume":"13","text":"13(2019), 1, Seite 1823-1871","extent":"49","year":"2019","pages":"1823-1871","issue":"1"},"titleAlt":[{"title":"EJS"}],"pubHistory":["1.2007 -"],"recId":"538998830","language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"A joint quantile and expected shortfall regression frameworkElectronic journal of statistics"}],"name":{"displayForm":["Timo Dimitriadis and Sebastian Bayer"]},"origin":[{"dateIssuedDisp":"7 June 2019","dateIssuedKey":"2019"}],"id":{"eki":["1854442333"],"doi":["10.1214/19-EJS1560"]}} | ||
| SRT | |a DIMITRIADIJOINTQUANT7201 | ||