A joint quantile and expected shortfall regression framework

We introduce a novel regression framework which simultaneously models the quantile and the Expected Shortfall (ES) of a response variable given a set of covariates. This regression is based on strictly consistent loss functions for the pair consisting of the quantile and the ES, which allow for M- a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dimitriadis, Timo (VerfasserIn) , Bayer, Sebastian (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 7 June 2019
In: Electronic journal of statistics
Year: 2019, Jahrgang: 13, Heft: 1, Pages: 1823-1871
ISSN:1935-7524
DOI:10.1214/19-EJS1560
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1214/19-EJS1560
Verlag, kostenfrei, Volltext: https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-13/issue-1/A-joint-quantile-and-expected-shortfall-regression-framework/10.1214/19-EJS1560.full
Volltext
Verfasserangaben:Timo Dimitriadis and Sebastian Bayer
Beschreibung
Zusammenfassung:We introduce a novel regression framework which simultaneously models the quantile and the Expected Shortfall (ES) of a response variable given a set of covariates. This regression is based on strictly consistent loss functions for the pair consisting of the quantile and the ES, which allow for M- and Z-estimation of the joint regression parameters. We show consistency and asymptotic normality for both estimators under weak regularity conditions. The underlying loss functions depend on two specification functions, whose choices affect the properties of the resulting estimators. We find that the Z-estimator is numerically unstable and thus, we rely on M-estimation of the model parameters. Extensive simulations verify the asymptotic properties and analyze the small sample behavior of the M-estimator for different specification functions. This joint regression framework allows for various applications including estimating, forecasting and backtesting ES, which is particularly relevant in light of the recent introduction of the ES into the Basel Accords. We illustrate this through two exemplary empirical applications in forecasting and forecast combination of the ES.
Beschreibung:Gesehen am 07.08.2023
Beschreibung:Online Resource
ISSN:1935-7524
DOI:10.1214/19-EJS1560