Machine learning and patient-reported outcomes for longitudinal monitoring of disease progression in metastatic breast cancer: a multicenter, retrospective analysis

Background - Assessments of health-related quality of life (HRQoL) play an important role in transition to palliative care for women with metastatic breast cancer. We developed machine learning (ML) algorithms to analyse longitudinal HRQoL data and identify patients who may benefit from palliative c...

Full description

Saved in:
Bibliographic Details
Main Authors: Deutsch, Thomas M. (Author) , Pfob, André (Author) , Brusniak, Katharina (Author) , Riedel, Fabian (Author) , Bauer, Armin (Author) , Dijkstra, Tjeerd (Author) , Engler, Tobias (Author) , Brucker, Sara Y. (Author) , Hartkopf, Andreas D. (Author) , Schneeweiss, Andreas (Author) , Sidey-Gibbons, Chris (Author) , Wallwiener, Markus (Author)
Format: Article (Journal)
Language:English
Published: July 2023
In: European journal of cancer
Year: 2023, Volume: 188, Pages: 111-121
ISSN:1879-0852
DOI:10.1016/j.ejca.2023.04.019
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.ejca.2023.04.019
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0959804923002204
Get full text
Author Notes:Thomas M. Deutsch, André Pfob, Katharina Brusniak, Fabian Riedel, Armin Bauer, Tjeerd Dijkstra, Tobias Engler, Sara Y. Brucker, Andreas D. Hartkopf, Andreas Schneeweiss, Chris Sidey-Gibbons, Markus Wallwiener

MARC

LEADER 00000caa a2200000 c 4500
001 1856164810
003 DE-627
005 20240329080232.0
007 cr uuu---uuuuu
008 230815s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ejca.2023.04.019  |2 doi 
035 |a (DE-627)1856164810 
035 |a (DE-599)KXP1856164810 
035 |a (OCoLC)1425213098 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Deutsch, Thomas M.  |d 1988-  |e VerfasserIn  |0 (DE-588)1160897573  |0 (DE-627)1024291448  |0 (DE-576)506227960  |4 aut 
245 1 0 |a Machine learning and patient-reported outcomes for longitudinal monitoring of disease progression in metastatic breast cancer  |b a multicenter, retrospective analysis  |c Thomas M. Deutsch, André Pfob, Katharina Brusniak, Fabian Riedel, Armin Bauer, Tjeerd Dijkstra, Tobias Engler, Sara Y. Brucker, Andreas D. Hartkopf, Andreas Schneeweiss, Chris Sidey-Gibbons, Markus Wallwiener 
264 1 |c July 2023 
300 |b Illustrationen 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 29. April 2023, Artikelversion: 23. Mai 2023 
500 |a Gesehen am 15.08.2023 
520 |a Background - Assessments of health-related quality of life (HRQoL) play an important role in transition to palliative care for women with metastatic breast cancer. We developed machine learning (ML) algorithms to analyse longitudinal HRQoL data and identify patients who may benefit from palliative care due to disease progression. - Methods - We recruited patients from two institutions and administered the EuroQoL Visual Analog Scale (EQ-VAS) via an online platform over a 6-month period. We trained a regularised regression algorithm using 10-fold cross-validation to determine if a patient was at high or low risk of disease progression based on changes in the EQ-VAS scores using data of one institution and validated the performance on data of the other institution. Progression-free survival (PFS) was the end-point. We conducted Kaplan-Meier and Cox regression analysis adjusted for clinical risk factors. - Results - Of 179 patients, 98 (54.7%) had progressive disease after a median follow-up of 14weeks. Using EQ-VAS scores collected at weeks 1-6 to predict disease progression at week 12, in the validation set (n = 63), PFS was significantly lower in the intelligent EQ-VAS high-risk versus low-risk group: median PFS 7 versus 10weeks, log-rank P < 0.038). Intelligent EQ-VAS had the strongest association with PFS (adjusted hazard ratio 2.69, 95% confidence interval 1.17-6.18, P = 0.02). - Conclusion - ML algorithms can analyse changes in longitudinal HRQoL data to identify patients with disease progression earlier than standard follow-up methods. Intelligent EQ-VAS scores were identified as independent prognostic factor. Future studies may validate these results to remotely monitor patients. 
650 4 |a Artificial Intelligence 
650 4 |a Digital medicine 
650 4 |a Machine learning 
650 4 |a Metastatic breast cancer 
650 4 |a Palliative care 
700 1 |a Pfob, André  |e VerfasserIn  |0 (DE-588)1167798945  |0 (DE-627)1031607064  |0 (DE-576)51127338X  |4 aut 
700 1 |a Brusniak, Katharina  |e VerfasserIn  |4 aut 
700 1 |a Riedel, Fabian  |d 1987-  |e VerfasserIn  |0 (DE-588)1117048381  |0 (DE-627)870923951  |0 (DE-576)478697007  |4 aut 
700 1 |a Bauer, Armin  |e VerfasserIn  |4 aut 
700 1 |a Dijkstra, Tjeerd  |e VerfasserIn  |4 aut 
700 1 |a Engler, Tobias  |e VerfasserIn  |4 aut 
700 1 |a Brucker, Sara Y.  |e VerfasserIn  |4 aut 
700 1 |a Hartkopf, Andreas D.  |e VerfasserIn  |4 aut 
700 1 |a Schneeweiss, Andreas  |d 1961-  |e VerfasserIn  |0 (DE-588)109972554  |0 (DE-627)632849630  |0 (DE-576)327251859  |4 aut 
700 1 |a Sidey-Gibbons, Chris  |e VerfasserIn  |4 aut 
700 1 |a Wallwiener, Markus  |d 1980-  |e VerfasserIn  |0 (DE-588)134044827  |0 (DE-627)692043934  |0 (DE-576)27468327X  |4 aut 
773 0 8 |i Enthalten in  |t European journal of cancer  |d Amsterdam [u.a.] : Elsevier, 1992  |g 188(2023) vom: Juli, Seite 111-121  |w (DE-627)266883400  |w (DE-600)1468190-0  |w (DE-576)090954173  |x 1879-0852  |7 nnas  |a Machine learning and patient-reported outcomes for longitudinal monitoring of disease progression in metastatic breast cancer a multicenter, retrospective analysis 
773 1 8 |g volume:188  |g year:2023  |g month:07  |g pages:111-121  |g extent:11  |a Machine learning and patient-reported outcomes for longitudinal monitoring of disease progression in metastatic breast cancer a multicenter, retrospective analysis 
856 4 0 |u https://doi.org/10.1016/j.ejca.2023.04.019  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0959804923002204  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230815 
993 |a Article 
994 |a 2023 
998 |g 134044827  |a Wallwiener, Markus  |m 134044827:Wallwiener, Markus  |d 910000  |d 910400  |d 50000  |e 910000PW134044827  |e 910400PW134044827  |e 50000PW134044827  |k 0/910000/  |k 1/910000/910400/  |k 0/50000/  |p 12  |y j 
998 |g 109972554  |a Schneeweiss, Andreas  |m 109972554:Schneeweiss, Andreas  |d 910000  |d 910400  |d 50000  |e 910000PS109972554  |e 910400PS109972554  |e 50000PS109972554  |k 0/910000/  |k 1/910000/910400/  |k 0/50000/  |p 10 
998 |g 1117048381  |a Riedel, Fabian  |m 1117048381:Riedel, Fabian  |d 910000  |d 910400  |e 910000PR1117048381  |e 910400PR1117048381  |k 0/910000/  |k 1/910000/910400/  |p 4 
998 |g 1167798945  |a Pfob, André  |m 1167798945:Pfob, André  |d 910000  |d 910400  |e 910000PP1167798945  |e 910400PP1167798945  |k 0/910000/  |k 1/910000/910400/  |p 2 
998 |g 1160897573  |a Deutsch, Thomas M.  |m 1160897573:Deutsch, Thomas M.  |d 910000  |d 910400  |e 910000PD1160897573  |e 910400PD1160897573  |k 0/910000/  |k 1/910000/910400/  |p 1  |x j 
999 |a KXP-PPN1856164810  |e 4366226995 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Online verfügbar: 29. April 2023, Artikelversion: 23. Mai 2023","Gesehen am 15.08.2023"],"person":[{"given":"Thomas M.","display":"Deutsch, Thomas M.","family":"Deutsch","role":"aut"},{"family":"Pfob","role":"aut","display":"Pfob, André","given":"André"},{"family":"Brusniak","role":"aut","display":"Brusniak, Katharina","given":"Katharina"},{"role":"aut","family":"Riedel","display":"Riedel, Fabian","given":"Fabian"},{"role":"aut","family":"Bauer","given":"Armin","display":"Bauer, Armin"},{"given":"Tjeerd","display":"Dijkstra, Tjeerd","role":"aut","family":"Dijkstra"},{"role":"aut","family":"Engler","display":"Engler, Tobias","given":"Tobias"},{"role":"aut","family":"Brucker","display":"Brucker, Sara Y.","given":"Sara Y."},{"display":"Hartkopf, Andreas D.","given":"Andreas D.","role":"aut","family":"Hartkopf"},{"display":"Schneeweiss, Andreas","given":"Andreas","role":"aut","family":"Schneeweiss"},{"given":"Chris","display":"Sidey-Gibbons, Chris","family":"Sidey-Gibbons","role":"aut"},{"role":"aut","family":"Wallwiener","display":"Wallwiener, Markus","given":"Markus"}],"recId":"1856164810","name":{"displayForm":["Thomas M. Deutsch, André Pfob, Katharina Brusniak, Fabian Riedel, Armin Bauer, Tjeerd Dijkstra, Tobias Engler, Sara Y. Brucker, Andreas D. Hartkopf, Andreas Schneeweiss, Chris Sidey-Gibbons, Markus Wallwiener"]},"language":["eng"],"origin":[{"dateIssuedDisp":"July 2023","dateIssuedKey":"2023"}],"relHost":[{"corporate":[{"display":"European Organization for Research on Treatment of Cancer","role":"isb"},{"role":"isb","display":"European Association for Cancer Research"},{"display":"European School of Oncology","role":"isb"}],"disp":"Machine learning and patient-reported outcomes for longitudinal monitoring of disease progression in metastatic breast cancer a multicenter, retrospective analysisEuropean journal of cancer","type":{"bibl":"periodical","media":"Online-Ressource"},"titleAlt":[{"title":"EJC online"}],"part":{"text":"188(2023) vom: Juli, Seite 111-121","extent":"11","pages":"111-121","year":"2023","volume":"188"},"language":["eng"],"pubHistory":["28.1992 -"],"note":["Gesehen am 21.03.24","Ungezählte Beil.: Supplement"],"id":{"zdb":["1468190-0"],"eki":["266883400"],"issn":["1879-0852"]},"title":[{"title_sort":"European journal of cancer","title":"European journal of cancer"}],"origin":[{"dateIssuedDisp":"1992-","publisher":"Elsevier ; Pergamon Press","publisherPlace":"Amsterdam [u.a.] ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1992"}],"recId":"266883400"}],"physDesc":[{"extent":"11 S.","noteIll":"Illustrationen"}],"id":{"eki":["1856164810"],"doi":["10.1016/j.ejca.2023.04.019"]},"title":[{"subtitle":"a multicenter, retrospective analysis","title":"Machine learning and patient-reported outcomes for longitudinal monitoring of disease progression in metastatic breast cancer","title_sort":"Machine learning and patient-reported outcomes for longitudinal monitoring of disease progression in metastatic breast cancer"}],"type":{"bibl":"article-journal","media":"Online-Ressource"}} 
SRT |a DEUTSCHTHOMACHINELEA2023