Duality of orthogonal and symplectic random tensor models: general invariants

In Gurau and Keppler 2022 (arxiv:2207.01993), a relation between orthogonal and symplectic tensor models with quartic interactions was proven. In this paper, we provide an alternative proof that extends to polynomial interactions of arbitrary order. We consider tensor models of order D with no symme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Keppler, Hannes (VerfasserIn) , Muller, Thomas (VerfasserIn)
Dokumenttyp: Article (Journal) Editorial
Sprache:Englisch
Veröffentlicht: 2023
In: Letters in mathematical physics
Year: 2023, Jahrgang: 113, Heft: 4, Pages: 1-15
ISSN:1573-0530
DOI:10.1007/s11005-023-01706-7
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s11005-023-01706-7
Volltext
Verfasserangaben:Hannes Keppler, Thomas Muller
Beschreibung
Zusammenfassung:In Gurau and Keppler 2022 (arxiv:2207.01993), a relation between orthogonal and symplectic tensor models with quartic interactions was proven. In this paper, we provide an alternative proof that extends to polynomial interactions of arbitrary order. We consider tensor models of order D with no symmetry under permutation of the indices that transform in the tensor product of D fundamental representations of O(N) and Sp(N). We explicitly show that the models obey the N to $$-N$$duality graph by graph in perturbation theory.
Beschreibung:Veröffentlicht: 12. Juli 2023
Gesehen am 18.08.2023
Beschreibung:Online Resource
ISSN:1573-0530
DOI:10.1007/s11005-023-01706-7