Numerical RG-time integration of the effective potential: analysis and benchmark

We investigate the renormalization group (RG)-time integration of the effective potential in the functional renormalization group in the presence of spontaneous symmetry breaking and its subsequent convexity restoration on the example of a scalar theory in d=3. The features of this setup are common...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ihssen, Friederike (VerfasserIn) , Sattler, Franz R. (VerfasserIn) , Wink, Nicolas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 7 June 2023
In: Physical review
Year: 2023, Jahrgang: 107, Heft: 11, Pages: 1-22
ISSN:2470-0029
DOI:10.1103/PhysRevD.107.114009
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevD.107.114009
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.107.114009
Volltext
Verfasserangaben:Friederike Ihssen, Franz R. Sattler, and Nicolas Wink
Beschreibung
Zusammenfassung:We investigate the renormalization group (RG)-time integration of the effective potential in the functional renormalization group in the presence of spontaneous symmetry breaking and its subsequent convexity restoration on the example of a scalar theory in d=3. The features of this setup are common to many physical models and our results are, therefore, directly applicable to a variety of situations. We provide exhaustive work-precision benchmarks and numerical stability analyses by considering the combination of different discrete formulations of the flow equation and a large collection of different algorithms. The results are explained by using the different components entering the RG-time integration process and the eigenvalue structure of the discrete system. Particularly, the combination of Rosenbrock methods, implicit multistep methods, or certain (diagonally) implicit Runge-Kutta methods with exact or automatic differentiation Jacobians proves to be very potent. Furthermore, a reformulation in a logarithmic variable circumvents issues related to the singularity bound in the flat regime of the potential.
Beschreibung:Gesehen am 18.08.2023
Beschreibung:Online Resource
ISSN:2470-0029
DOI:10.1103/PhysRevD.107.114009