De Rham compatible Deep Neural Network FEM

On general regular simplicial partitions T of bounded polytopal domains Ω⊂Rd, d∈{2,3}, we construct exact neural network (NN) emulations of all lowest order finite element spaces in the discrete de Rham complex. These include the spaces of piecewise constant functions, continuous piecewise linear (C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Longo, Marcello (VerfasserIn) , Opschoor, Joost A. A. (VerfasserIn) , Disch, Nico (VerfasserIn) , Schwab, Christoph (VerfasserIn) , Zech, Jakob (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: August 2023
In: Neural networks
Year: 2023, Jahrgang: 165, Pages: 721-739
ISSN:1879-2782
DOI:10.1016/j.neunet.2023.06.008
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.neunet.2023.06.008
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S0893608023003088
Volltext
Verfasserangaben:Marcello Longo, Joost A.A. Opschoor, Nico Disch, Christoph Schwab, Jakob Zech

MARC

LEADER 00000caa a2200000 c 4500
001 1857947851
003 DE-627
005 20240307055622.0
007 cr uuu---uuuuu
008 230825s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.neunet.2023.06.008  |2 doi 
035 |a (DE-627)1857947851 
035 |a (DE-599)KXP1857947851 
035 |a (OCoLC)1425212614 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Longo, Marcello  |d 1994-  |e VerfasserIn  |0 (DE-588)1300107162  |0 (DE-627)185794822X  |4 aut 
245 1 0 |a De Rham compatible Deep Neural Network FEM  |c Marcello Longo, Joost A.A. Opschoor, Nico Disch, Christoph Schwab, Jakob Zech 
264 1 |c August 2023 
300 |b Illustrationen 
300 |a 19 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 9. Juni 2023, Artikelversion: 28. Juni 2023 
500 |a Gesehen am 25.08.2023 
520 |a On general regular simplicial partitions T of bounded polytopal domains Ω⊂Rd, d∈{2,3}, we construct exact neural network (NN) emulations of all lowest order finite element spaces in the discrete de Rham complex. These include the spaces of piecewise constant functions, continuous piecewise linear (CPwL) functions, the classical “Raviart-Thomas element”, and the “Nédélec edge element”. For all but the CPwL case, our network architectures employ both ReLU (rectified linear unit) and BiSU (binary step unit) activations to capture discontinuities. In the important case of CPwL functions, we prove that it suffices to work with pure ReLU nets. Our construction and DNN architecture generalizes previous results in that no geometric restrictions on the regular simplicial partitions T of Ω are required for DNN emulation. In addition, for CPwL functions our DNN construction is valid in any dimension d≥2. Our “FE-Nets” are required in the variationally correct, structure-preserving approximation of boundary value problems of electromagnetism in nonconvex polyhedra Ω⊂R3. They are thus an essential ingredient in the application of e.g., the methodology of “physics-informed NNs” or “deep Ritz methods” to electromagnetic field simulation via deep learning techniques. We indicate generalizations of our constructions to higher-order compatible spaces and other, non-compatible classes of discretizations, in particular the “Crouzeix-Raviart” elements and Hybridized, Higher Order (HHO) methods. 
650 4 |a De Rham complex 
650 4 |a Finite Elements 
650 4 |a Lavrentiev gap 
650 4 |a Neural networks 
650 4 |a PINNs 
700 1 |a Opschoor, Joost A. A.  |e VerfasserIn  |4 aut 
700 1 |a Disch, Nico  |e VerfasserIn  |4 aut 
700 1 |a Schwab, Christoph  |e VerfasserIn  |4 aut 
700 1 |a Zech, Jakob  |d 1989-  |e VerfasserIn  |0 (DE-588)1188583484  |0 (DE-627)1667521764  |4 aut 
773 0 8 |i Enthalten in  |t Neural networks  |d Amsterdam : Elsevier, 1988  |g 165(2023) vom: Aug., Seite 721-739  |h Online-Ressource  |w (DE-627)302468536  |w (DE-600)1491372-0  |w (DE-576)07971997X  |x 1879-2782  |7 nnas  |a De Rham compatible Deep Neural Network FEM 
773 1 8 |g volume:165  |g year:2023  |g month:08  |g pages:721-739  |g extent:19  |a De Rham compatible Deep Neural Network FEM 
856 4 0 |u https://doi.org/10.1016/j.neunet.2023.06.008  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0893608023003088  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20230825 
993 |a Article 
994 |a 2023 
998 |g 1188583484  |a Zech, Jakob  |m 1188583484:Zech, Jakob  |d 700000  |d 708000  |e 700000PZ1188583484  |e 708000PZ1188583484  |k 0/700000/  |k 1/700000/708000/  |p 5  |y j 
999 |a KXP-PPN1857947851  |e 4370232791 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedDisp":"August 2023","dateIssuedKey":"2023"}],"note":["Online verfügbar: 9. Juni 2023, Artikelversion: 28. Juni 2023","Gesehen am 25.08.2023"],"relHost":[{"recId":"302468536","note":["Gesehen am 22.05.23","Ungezählte Beil.: Supplement"],"origin":[{"publisherPlace":"Amsterdam ; New York, NY [u.a.]","dateIssuedDisp":"1988-","publisher":"Elsevier ; Pergamon Press","dateIssuedKey":"1988"}],"pubHistory":["1.1988- 24.2011; Vol. 25.2012 -"],"id":{"issn":["1879-2782"],"zdb":["1491372-0"],"eki":["302468536"]},"language":["eng"],"title":[{"title":"Neural networks","subtitle":"the official journal of the International Neural Network Society, European Neural Network Society and Japanese Neural Network Society","title_sort":"Neural networks"}],"part":{"text":"165(2023) vom: Aug., Seite 721-739","year":"2023","pages":"721-739","volume":"165","extent":"19"},"physDesc":[{"extent":"Online-Ressource"}],"disp":"De Rham compatible Deep Neural Network FEMNeural networks","type":{"media":"Online-Ressource","bibl":"periodical"}}],"recId":"1857947851","type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"name":{"displayForm":["Marcello Longo, Joost A.A. Opschoor, Nico Disch, Christoph Schwab, Jakob Zech"]},"id":{"eki":["1857947851"],"doi":["10.1016/j.neunet.2023.06.008"]},"physDesc":[{"noteIll":"Illustrationen","extent":"19 S."}],"title":[{"title_sort":"De Rham compatible Deep Neural Network FEM","title":"De Rham compatible Deep Neural Network FEM"}],"person":[{"display":"Longo, Marcello","given":"Marcello","role":"aut","family":"Longo"},{"family":"Opschoor","role":"aut","display":"Opschoor, Joost A. A.","given":"Joost A. A."},{"family":"Disch","display":"Disch, Nico","given":"Nico","role":"aut"},{"display":"Schwab, Christoph","given":"Christoph","role":"aut","family":"Schwab"},{"given":"Jakob","display":"Zech, Jakob","role":"aut","family":"Zech"}]} 
SRT |a LONGOMARCEDERHAMCOMP2023