Symptom diaries as a digital tool to detect SARS-CoV-2 infections and differentiate between prevalent variants

The COVID-19 pandemic and the high numbers of infected individuals pose major challenges for public health departments. To overcome these challenges, the health department in Cologne has developed a software called DiKoMa. This software offers the possibility to track contact and index persons, but...

Full description

Saved in:
Bibliographic Details
Main Authors: Grüne, Barbara (Author) , Kugler, Sabine (Author) , Ginzel, Sebastian (Author) , Wolff, Anna (Author) , Buess, Michael (Author) , Kossow, Annelene (Author) , Küfer-Weiß, Annika (Author) , Rüping, Stefan (Author) , Neuhann, Florian (Author)
Format: Article (Journal)
Language:English
Published: 2022
In: Frontiers in Public Health
Year: 2022, Volume: 10, Pages: 1-10
ISSN:2296-2565
DOI:10.3389/fpubh.2022.1030939
Online Access:Verlag, kostenfrei, Volltext: https://dx.doi.org/10.3389/fpubh.2022.1030939
Verlag, kostenfrei, Volltext: https://www.frontiersin.org/articles/10.3389/fpubh.2022.1030939
Get full text
Author Notes:Barbara Grüne, Sabine Kugler, Sebastian Ginzel, Anna Wolff, Michael Buess, Annelene Kossow, Annika Küfer-Weiß, Stefan Rüping and Florian Neuhann

MARC

LEADER 00000caa a2200000 c 4500
001 1857981413
003 DE-627
005 20240307084821.0
007 cr uuu---uuuuu
008 230825s2022 xx |||||o 00| ||eng c
024 7 |a 10.3389/fpubh.2022.1030939  |2 doi 
035 |a (DE-627)1857981413 
035 |a (DE-599)KXP1857981413 
035 |a (OCoLC)1425217026 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Grüne, Barbara  |e VerfasserIn  |0 (DE-588)1300125500  |0 (DE-627)1857981871  |4 aut 
245 1 0 |a Symptom diaries as a digital tool to detect SARS-CoV-2 infections and differentiate between prevalent variants  |c Barbara Grüne, Sabine Kugler, Sebastian Ginzel, Anna Wolff, Michael Buess, Annelene Kossow, Annika Küfer-Weiß, Stefan Rüping and Florian Neuhann 
264 1 |c 2022 
300 |b Illustrationen 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Veröffentlicht: 14. November 2022 
500 |a Gesehen am 25.08.2023 
520 |a The COVID-19 pandemic and the high numbers of infected individuals pose major challenges for public health departments. To overcome these challenges, the health department in Cologne has developed a software called DiKoMa. This software offers the possibility to track contact and index persons, but also provides a digital symptom diary. In this work, the question of whether these can also be used for diagnostic purposes will be investigated. Machine learning makes it possible to identify infections based on early symptom profiles and to distinguish between the predominant dominant variants. Focusing on the occurrence of the symptoms in the first week, a decision tree is trained for the differentiation between contact and index persons and the prevailing dominant variants (Wildtype, Alpha, Delta, and Omicron). The model is evaluated, using sex- and age-stratified cross-validation and validated by symptom profiles of the first 6 days. The variants achieve an AUC-ROC from 0.89 for Omicron and 0.6 for Alpha. No significant differences are observed for the results of the validation set (Alpha 0.63 and Omicron 0.87). The evaluation of symptom combinations using artificial intelligence can determine the individual risk for the presence of a COVID-19 infection, allows assignment to virus variants, and can contribute to the management of epidemics and pandemics on a national and international level. It can help to reduce the number of specific tests in times of low labor capacity and could help to early identify new virus variants. 
700 1 |a Kugler, Sabine  |e VerfasserIn  |4 aut 
700 1 |a Ginzel, Sebastian  |e VerfasserIn  |4 aut 
700 1 |a Wolff, Anna  |e VerfasserIn  |4 aut 
700 1 |a Buess, Michael  |e VerfasserIn  |4 aut 
700 1 |a Kossow, Annelene  |e VerfasserIn  |4 aut 
700 1 |a Küfer-Weiß, Annika  |e VerfasserIn  |4 aut 
700 1 |a Rüping, Stefan  |e VerfasserIn  |4 aut 
700 1 |a Neuhann, Florian  |e VerfasserIn  |0 (DE-588)1049921046  |0 (DE-627)78288881X  |0 (DE-576)403914159  |4 aut 
773 0 8 |i Enthalten in  |t Frontiers in Public Health  |d Lausanne : Frontiers Media, 2013  |g 10(2022), Artikel-ID 1030939, Seite 1-10  |h Online-Ressource  |w (DE-627)742224589  |w (DE-600)2711781-9  |w (DE-576)381275175  |x 2296-2565  |7 nnas  |a Symptom diaries as a digital tool to detect SARS-CoV-2 infections and differentiate between prevalent variants 
773 1 8 |g volume:10  |g year:2022  |g elocationid:1030939  |g pages:1-10  |g extent:10  |a Symptom diaries as a digital tool to detect SARS-CoV-2 infections and differentiate between prevalent variants 
856 4 0 |u https://dx.doi.org/10.3389/fpubh.2022.1030939  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.frontiersin.org/articles/10.3389/fpubh.2022.1030939  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20230825 
993 |a Article 
994 |a 2023 
998 |g 1049921046  |a Neuhann, Florian  |m 1049921046:Neuhann, Florian  |d 910000  |d 912800  |e 910000PN1049921046  |e 912800PN1049921046  |k 0/910000/  |k 1/910000/912800/  |p 9  |y j 
999 |a KXP-PPN1857981413  |e 437034185X 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Veröffentlicht: 14. November 2022","Gesehen am 25.08.2023"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"2022"}],"title":[{"title_sort":"Symptom diaries as a digital tool to detect SARS-CoV-2 infections and differentiate between prevalent variants","title":"Symptom diaries as a digital tool to detect SARS-CoV-2 infections and differentiate between prevalent variants"}],"language":["eng"],"person":[{"given":"Barbara","role":"aut","family":"Grüne","display":"Grüne, Barbara"},{"family":"Kugler","display":"Kugler, Sabine","role":"aut","given":"Sabine"},{"display":"Ginzel, Sebastian","family":"Ginzel","given":"Sebastian","role":"aut"},{"role":"aut","given":"Anna","display":"Wolff, Anna","family":"Wolff"},{"display":"Buess, Michael","family":"Buess","role":"aut","given":"Michael"},{"family":"Kossow","display":"Kossow, Annelene","role":"aut","given":"Annelene"},{"given":"Annika","role":"aut","family":"Küfer-Weiß","display":"Küfer-Weiß, Annika"},{"role":"aut","given":"Stefan","family":"Rüping","display":"Rüping, Stefan"},{"given":"Florian","role":"aut","display":"Neuhann, Florian","family":"Neuhann"}],"id":{"doi":["10.3389/fpubh.2022.1030939"],"eki":["1857981413"]},"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["2013 -"],"recId":"742224589","id":{"zdb":["2711781-9"],"eki":["742224589"],"issn":["2296-2565"]},"disp":"Symptom diaries as a digital tool to detect SARS-CoV-2 infections and differentiate between prevalent variantsFrontiers in Public Health","origin":[{"dateIssuedKey":"2013","publisher":"Frontiers Media","publisherPlace":"Lausanne","dateIssuedDisp":"2013-"}],"titleAlt":[{"title":"FPUBH"}],"title":[{"title":"Frontiers in Public Health","title_sort":"Frontiers in Public Health"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"volume":"10","extent":"10","pages":"1-10","text":"10(2022), Artikel-ID 1030939, Seite 1-10","year":"2022"},"language":["eng"]}],"physDesc":[{"noteIll":"Illustrationen","extent":"10 S."}],"name":{"displayForm":["Barbara Grüne, Sabine Kugler, Sebastian Ginzel, Anna Wolff, Michael Buess, Annelene Kossow, Annika Küfer-Weiß, Stefan Rüping and Florian Neuhann"]},"recId":"1857981413"} 
SRT |a GRUENEBARBSYMPTOMDIA2022