Transfer learning for drug-target interaction prediction

Utilizing AI-driven approaches for drug-target interaction (DTI) prediction require large volumes of training data which are not available for the majority of target proteins. In this study, we investigate the use of deep transfer learning for the prediction of interactions between drug candidate co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dalkıran, Alperen (VerfasserIn) , Atakan, Ahmet (VerfasserIn) , Rifaioglu, Ahmet (VerfasserIn) , Martin, Maria J (VerfasserIn) , Atalay, Rengül Çetin (VerfasserIn) , Acar, Aybar C (VerfasserIn) , Doğan, Tunca (VerfasserIn) , Atalay, Volkan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: June 2023
In: Bioinformatics
Year: 2023, Jahrgang: 39, Pages: i103-i110
ISSN:1367-4811
DOI:10.1093/bioinformatics/btad234
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1093/bioinformatics/btad234
Volltext
Verfasserangaben:Alperen Dalkıran, Ahmet Atakan, Ahmet S. Rifaioğlu, Maria J. Martin, Rengül Çetin Atalay, Aybar C. Acar, Tunca Doğan, Volkan Atalay

MARC

LEADER 00000caa a2200000 c 4500
001 1858155630
003 DE-627
005 20240329080552.0
007 cr uuu---uuuuu
008 230829s2023 xx |||||o 00| ||eng c
024 7 |a 10.1093/bioinformatics/btad234  |2 doi 
035 |a (DE-627)1858155630 
035 |a (DE-599)KXP1858155630 
035 |a (OCoLC)1425212431 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Dalkıran, Alperen  |e VerfasserIn  |0 (DE-588)1300371870  |0 (DE-627)1858159504  |4 aut 
245 1 0 |a Transfer learning for drug-target interaction prediction  |c Alperen Dalkıran, Ahmet Atakan, Ahmet S. Rifaioğlu, Maria J. Martin, Rengül Çetin Atalay, Aybar C. Acar, Tunca Doğan, Volkan Atalay 
264 1 |c June 2023 
300 |a 8 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Veröffentlicht: 30. Juni 2023 
500 |a Gesehen am 29.08.2023 
520 |a Utilizing AI-driven approaches for drug-target interaction (DTI) prediction require large volumes of training data which are not available for the majority of target proteins. In this study, we investigate the use of deep transfer learning for the prediction of interactions between drug candidate compounds and understudied target proteins with scarce training data. The idea here is to first train a deep neural network classifier with a generalized source training dataset of large size and then to reuse this pre-trained neural network as an initial configuration for re-training/fine-tuning purposes with a small-sized specialized target training dataset. To explore this idea, we selected six protein families that have critical importance in biomedicine: kinases, G-protein-coupled receptors (GPCRs), ion channels, nuclear receptors, proteases, and transporters. In two independent experiments, the protein families of transporters and nuclear receptors were individually set as the target datasets, while the remaining five families were used as the source datasets. Several size-based target family training datasets were formed in a controlled manner to assess the benefit provided by the transfer learning approach.Here, we present a systematic evaluation of our approach by pre-training a feed-forward neural network with source training datasets and applying different modes of transfer learning from the pre-trained source network to a target dataset. The performance of deep transfer learning is evaluated and compared with that of training the same deep neural network from scratch. We found that when the training dataset contains fewer than 100 compounds, transfer learning outperforms the conventional strategy of training the system from scratch, suggesting that transfer learning is advantageous for predicting binders to under-studied targets.The source code and datasets are available at https://github.com/cansyl/TransferLearning4DTI. Our web-based service containing the ready-to-use pre-trained models is accessible at https://tl4dti.kansil.org. 
700 1 |a Atakan, Ahmet  |e VerfasserIn  |4 aut 
700 1 |a Rifaioglu, Ahmet  |e VerfasserIn  |0 (DE-588)1300369957  |0 (DE-627)1858156408  |4 aut 
700 1 |a Martin, Maria J  |e VerfasserIn  |4 aut 
700 1 |a Atalay, Rengül Çetin  |e VerfasserIn  |4 aut 
700 1 |a Acar, Aybar C  |e VerfasserIn  |4 aut 
700 1 |a Doğan, Tunca  |e VerfasserIn  |4 aut 
700 1 |a Atalay, Volkan  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Bioinformatics  |d Oxford : Oxford Univ. Press, 1998  |g 39(2023), Supplement_1, Seite i103-i110  |h Online-Ressource  |w (DE-627)266884857  |w (DE-600)1468345-3  |w (DE-576)079420133  |x 1367-4811  |7 nnas  |a Transfer learning for drug-target interaction prediction 
773 1 8 |g volume:39  |g year:2023  |g supplement:Supplement_1  |g pages:i103-i110  |g extent:8  |a Transfer learning for drug-target interaction prediction 
856 4 0 |u https://doi.org/10.1093/bioinformatics/btad234  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20230829 
993 |a Article 
994 |a 2023 
998 |g 1300369957  |a Rifaioğlu, Ahmet  |m 1300369957:Rifaioğlu, Ahmet  |d 50000  |e 50000PR1300369957  |k 0/50000/  |p 3 
999 |a KXP-PPN1858155630  |e 4370721997 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"note":["Veröffentlicht: 30. Juni 2023","Gesehen am 29.08.2023"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"origin":[{"dateIssuedDisp":"June 2023","dateIssuedKey":"2023"}],"title":[{"title":"Transfer learning for drug-target interaction prediction","title_sort":"Transfer learning for drug-target interaction prediction"}],"person":[{"display":"Dalkıran, Alperen","family":"Dalkıran","role":"aut","given":"Alperen"},{"given":"Ahmet","role":"aut","family":"Atakan","display":"Atakan, Ahmet"},{"role":"aut","given":"Ahmet","display":"Rifaioglu, Ahmet","family":"Rifaioglu"},{"role":"aut","given":"Maria J","family":"Martin","display":"Martin, Maria J"},{"given":"Rengül Çetin","role":"aut","display":"Atalay, Rengül Çetin","family":"Atalay"},{"display":"Acar, Aybar C","family":"Acar","role":"aut","given":"Aybar C"},{"family":"Doğan","display":"Doğan, Tunca","given":"Tunca","role":"aut"},{"family":"Atalay","display":"Atalay, Volkan","role":"aut","given":"Volkan"}],"relHost":[{"disp":"Transfer learning for drug-target interaction predictionBioinformatics","language":["eng"],"origin":[{"dateIssuedKey":"1998","publisher":"Oxford Univ. Press","publisherPlace":"Oxford","dateIssuedDisp":"1998-"}],"note":["Gesehen am 26.07.2023","Fortsetzung der Druck-Ausgabe"],"titleAlt":[{"title":"Bioinformatics online"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"title":"Bioinformatics","title_sort":"Bioinformatics"}],"part":{"year":"2023","text":"39(2023), Supplement_1, Seite i103-i110","pages":"i103-i110","extent":"8","volume":"39"},"pubHistory":["14.1998 -"],"recId":"266884857","physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1367-4811"],"eki":["266884857"],"zdb":["1468345-3"]}}],"id":{"doi":["10.1093/bioinformatics/btad234"],"eki":["1858155630"]},"recId":"1858155630","name":{"displayForm":["Alperen Dalkıran, Ahmet Atakan, Ahmet S. Rifaioğlu, Maria J. Martin, Rengül Çetin Atalay, Aybar C. Acar, Tunca Doğan, Volkan Atalay"]},"physDesc":[{"extent":"8 S."}]} 
SRT |a DALKIRANALTRANSFERLE2023