CNN based cuneiform sign detection learned from annotated 3D renderings and mapped photographs with illumination augmentation

Motivated by the challenges of the Digital Ancient Near Eastern Studies (DANES) community, we develop digital tools for processing cuneiform script being a 3D script imprinted into clay tablets used for more than three millennia and at least eight major languages. It consists of thousands of charact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Stötzner, Ernst (VerfasserIn) , Homburg, Timo (VerfasserIn) , Mara, Hubert (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 22 Aug 2023
In: Arxiv
Year: 2023, Pages: 1-9
DOI:10.48550/arXiv.2308.11277
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2308.11277
Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2308.11277
Volltext
Verfasserangaben:Ernst Stötzner, Timo Homburg, Hubert Mara

MARC

LEADER 00000caa a2200000 c 4500
001 1858234727
003 DE-627
005 20240307055155.0
007 cr uuu---uuuuu
008 230830s2023 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.2308.11277  |2 doi 
035 |a (DE-627)1858234727 
035 |a (DE-599)KXP1858234727 
035 |a (OCoLC)1425212496 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Stötzner, Ernst  |e VerfasserIn  |0 (DE-588)1300462698  |0 (DE-627)1858235316  |4 aut 
245 1 0 |a CNN based cuneiform sign detection learned from annotated 3D renderings and mapped photographs with illumination augmentation  |c Ernst Stötzner, Timo Homburg, Hubert Mara 
264 1 |c 22 Aug 2023 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 30.08.2023 
520 |a Motivated by the challenges of the Digital Ancient Near Eastern Studies (DANES) community, we develop digital tools for processing cuneiform script being a 3D script imprinted into clay tablets used for more than three millennia and at least eight major languages. It consists of thousands of characters that have changed over time and space. Photographs are the most common representations usable for machine learning, while ink drawings are prone to interpretation. Best suited 3D datasets that are becoming available. We created and used the HeiCuBeDa and MaiCuBeDa datasets, which consist of around 500 annotated tablets. For our novel OCR-like approach to mixed image data, we provide an additional mapping tool for transferring annotations between 3D renderings and photographs. Our sign localization uses a RepPoints detector to predict the locations of characters as bounding boxes. We use image data from GigaMesh's MSII (curvature, see https://gigamesh.eu) based rendering, Phong-shaded 3D models, and photographs as well as illumination augmentation. The results show that using rendered 3D images for sign detection performs better than other work on photographs. In addition, our approach gives reasonably good results for photographs only, while it is best used for mixed datasets. More importantly, the Phong renderings, and especially the MSII renderings, improve the results on photographs, which is the largest dataset on a global scale. 
650 4 |a Computer Science - Artificial Intelligence 
650 4 |a Computer Science - Computer Vision and Pattern Recognition 
650 4 |a Computer Science - Machine Learning 
700 1 |a Homburg, Timo  |e VerfasserIn  |0 (DE-588)1300461551  |0 (DE-627)1858221382  |4 aut 
700 1 |a Mara, Hubert  |d 1975-  |e VerfasserIn  |0 (DE-588)1028750749  |0 (DE-627)731565584  |0 (DE-576)376225076  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2023) vom: Aug., Artikel-ID 2308.11277, Seite 1-9  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a CNN based cuneiform sign detection learned from annotated 3D renderings and mapped photographs with illumination augmentation 
773 1 8 |g year:2023  |g month:08  |g elocationid:2308.11277  |g pages:1-9  |g extent:9  |a CNN based cuneiform sign detection learned from annotated 3D renderings and mapped photographs with illumination augmentation 
787 0 8 |i Forschungsdaten  |a Mara, Hubert, 1975 -   |t MaiCuBeDa Hilprecht - Mainz Cuneiform Benchmark Dataset for the Hilprecht Collection  |d Heidelberg : Universität, 2023  |h 1 Online-Ressource (11 Files)  |w (DE-627)1858221188 
856 4 0 |u https://doi.org/10.48550/arXiv.2308.11277  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://arxiv.org/abs/2308.11277  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20230830 
993 |a Article 
994 |a 2023 
998 |g 1028750749  |a Mara, Hubert  |m 1028750749:Mara, Hubert  |d 110000  |e 110000PM1028750749  |k 0/110000/  |p 3  |y j 
999 |a KXP-PPN1858234727  |e 4371018459 
BIB |a Y 
JSO |a {"id":{"eki":["1858234727"],"doi":["10.48550/arXiv.2308.11277"]},"origin":[{"dateIssuedDisp":"22 Aug 2023","dateIssuedKey":"2023"}],"name":{"displayForm":["Ernst Stötzner, Timo Homburg, Hubert Mara"]},"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"disp":"CNN based cuneiform sign detection learned from annotated 3D renderings and mapped photographs with illumination augmentationArxiv","note":["Gesehen am 28.05.2024"],"type":{"bibl":"edited-book","media":"Online-Ressource"},"recId":"509006531","language":["eng"],"pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"year":"2023","pages":"1-9","text":"(2023) vom: Aug., Artikel-ID 2308.11277, Seite 1-9","extent":"9"},"title":[{"title":"Arxiv","title_sort":"Arxiv"}]}],"physDesc":[{"extent":"9 S."}],"title":[{"title_sort":"CNN based cuneiform sign detection learned from annotated 3D renderings and mapped photographs with illumination augmentation","title":"CNN based cuneiform sign detection learned from annotated 3D renderings and mapped photographs with illumination augmentation"}],"person":[{"given":"Ernst","family":"Stötzner","role":"aut","roleDisplay":"VerfasserIn","display":"Stötzner, Ernst"},{"family":"Homburg","given":"Timo","roleDisplay":"VerfasserIn","display":"Homburg, Timo","role":"aut"},{"display":"Mara, Hubert","roleDisplay":"VerfasserIn","role":"aut","family":"Mara","given":"Hubert"}],"recId":"1858234727","language":["eng"],"type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Gesehen am 30.08.2023"]} 
SRT |a STOETZNERECNNBASEDCU2220