Artificial intelligence to predict oncological outcome directly from hematoxylin and eosin-stained slides in urology
INTRODUCTION: Artificial intelligence (AI) has been successfully applied for automatic tumor detection and grading in histopathological image analysis in urologic oncology. The aim of this review was to assess the applicability of these approaches in image-based oncological outcome prediction. EVIDE...
Saved in:
| Main Authors: | , , , , , , , , , , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
March 11, 2022
|
| In: |
Minerva urology and nephrology
Year: 2022, Volume: 74, Issue: 5, Pages: 538-550 |
| ISSN: | 2724-6442 |
| DOI: | 10.23736/S2724-6051.22.04758-9 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.23736/S2724-6051.22.04758-9 Verlag, lizenzpflichtig, Volltext: https://www.minervamedica.it/en/journals/minerva-urology-nephrology/article.php?cod=R19Y2022N05A0538 |
| Author Notes: | Frederik Wessels, Sara Kuntz, Eva Krieghoff-Henning, Max Schmitt, Volker Braun, Thomas S. Worst, Manuel Neuberger, Matthias Steeg, Timo Gaiser, Stefan Fröhling, Maurice-Stephan Michel, Philipp Nuhn, Titus J. Brinker |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1859201407 | ||
| 003 | DE-627 | ||
| 005 | 20240307084423.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 230911s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.23736/S2724-6051.22.04758-9 |2 doi | |
| 035 | |a (DE-627)1859201407 | ||
| 035 | |a (DE-599)KXP1859201407 | ||
| 035 | |a (OCoLC)1425216957 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Wessels, Frederik |d 1990- |e VerfasserIn |0 (DE-588)1183323255 |0 (DE-627)1663137226 |4 aut | |
| 245 | 1 | 0 | |a Artificial intelligence to predict oncological outcome directly from hematoxylin and eosin-stained slides in urology |c Frederik Wessels, Sara Kuntz, Eva Krieghoff-Henning, Max Schmitt, Volker Braun, Thomas S. Worst, Manuel Neuberger, Matthias Steeg, Timo Gaiser, Stefan Fröhling, Maurice-Stephan Michel, Philipp Nuhn, Titus J. Brinker |
| 264 | 1 | |c March 11, 2022 | |
| 300 | |a 13 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 11.09.2023 | ||
| 520 | |a INTRODUCTION: Artificial intelligence (AI) has been successfully applied for automatic tumor detection and grading in histopathological image analysis in urologic oncology. The aim of this review was to assess the applicability of these approaches in image-based oncological outcome prediction. EVIDENCE ACQUISITION: A systematic literature search was conducted using the databases MEDLINE through PubMed and Web of Science up to April 20, 2021. Studies investigating AI approaches to determine the risk of recurrence, metastasis, or survival directly from H&E-stained tissue sections in prostate, renal cell or urothelial carcinomawere included. Characteristics of the AI approach and performance metrics were extracted and summarized. Risk of bias (RoB) was assessed using the PROBAST tool. EVIDENCE SYNTHESIS: 16 studies yielding a total of 6658 patients and reporting on 17 outcome predictions were included. Six studies focused on renal cell, six on prostate and three on urothelial carcinoma while one study investigatedrenal cell and urothelial carcinoma. Handcrafted feature extraction was used in five, a convolutional neural network (CNN) in six and a deep feature extraction in four studies. One study compared a CNN with handcrafted feature extraction. In seven outcome predictions, a multivariable comparison with clinicopathological parameters was reported. Five of them showed statistically significant hazard ratios for the AI’s model’s-prediction. However, RoB was high in 15 outcome predictions and unclear in two. CONCLUSIONS: The included studies are promising but predominantly early pilot studies, therefore primarily highlighting the potential of AI approaches. Additional well-designed studies are needed to assess the actual clinical applicability. | ||
| 700 | 1 | |a Kuntz, Sara |d 1984- |e VerfasserIn |0 (DE-588)1124269797 |0 (DE-627)877984786 |0 (DE-576)482422823 |4 aut | |
| 700 | 1 | |a Krieghoff-Henning, Eva |d 1976- |e VerfasserIn |0 (DE-588)132407914 |0 (DE-627)52267786X |0 (DE-576)299126706 |4 aut | |
| 700 | 1 | |a Schmitt, Max |e VerfasserIn |0 (DE-588)1236577469 |0 (DE-627)1761961586 |4 aut | |
| 700 | 1 | |a Braun, Volker |d 1972- |e VerfasserIn |0 (DE-588)1043808930 |0 (DE-627)770950825 |0 (DE-576)395926858 |4 aut | |
| 700 | 1 | |a Worst, Thomas |d 1985- |e VerfasserIn |0 (DE-588)1028335679 |0 (DE-627)73058500X |0 (DE-576)375827501 |4 aut | |
| 700 | 1 | |a Neuberger, Manuel |e VerfasserIn |0 (DE-588)118332331X |0 (DE-627)1663137250 |4 aut | |
| 700 | 1 | |a Steeg, Matthias |e VerfasserIn |0 (DE-588)1271490005 |0 (DE-627)1820321053 |4 aut | |
| 700 | 1 | |a Gaiser, Timo |d 1975- |e VerfasserIn |0 (DE-588)1030402280 |0 (DE-627)735221685 |0 (DE-576)378226533 |4 aut | |
| 700 | 1 | |a Fröhling, Stefan |d 1969- |e VerfasserIn |0 (DE-588)120890046 |0 (DE-627)080950302 |0 (DE-576)188733930 |4 aut | |
| 700 | 1 | |a Michel, Maurice Stephan |d 1970- |e VerfasserIn |0 (DE-588)121842568 |0 (DE-627)705674134 |0 (DE-576)29291363X |4 aut | |
| 700 | 1 | |a Nuhn, Philipp |d 1981- |e VerfasserIn |0 (DE-588)136112951 |0 (DE-627)694090808 |0 (DE-576)30083909X |4 aut | |
| 700 | 1 | |a Brinker, Titus Josef |d 1990- |e VerfasserIn |0 (DE-588)1156309395 |0 (DE-627)1018860487 |0 (DE-576)502097434 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Minerva urology and nephrology |d Torino : Edizioni Minerva Medica, 2021 |g 74(2022), 5 vom: Okt., Seite 538-550 |h Online-Ressource |w (DE-627)1757056777 |w (DE-600)3062844-1 |x 2724-6442 |7 nnas |a Artificial intelligence to predict oncological outcome directly from hematoxylin and eosin-stained slides in urology |
| 773 | 1 | 8 | |g volume:74 |g year:2022 |g number:5 |g month:10 |g pages:538-550 |g extent:13 |a Artificial intelligence to predict oncological outcome directly from hematoxylin and eosin-stained slides in urology |
| 787 | 0 | 8 | |i Ergänzung |a Rivero Belenchón, Inés |t Comment on “Artificial intelligence to predict oncological outcome directly from hematoxylin and eosin-stained slides in urology: da systematic review” |d 2022 |w (DE-627)1859206085 |
| 856 | 4 | 0 | |u https://doi.org/10.23736/S2724-6051.22.04758-9 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.minervamedica.it/en/journals/minerva-urology-nephrology/article.php?cod=R19Y2022N05A0538 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20230911 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 1156309395 |a Brinker, Titus Josef |m 1156309395:Brinker, Titus Josef |d 50000 |e 50000PB1156309395 |k 0/50000/ |p 13 |y j | ||
| 998 | |g 136112951 |a Nuhn, Philipp |m 136112951:Nuhn, Philipp |d 60000 |d 63100 |e 60000PN136112951 |e 63100PN136112951 |k 0/60000/ |k 1/60000/63100/ |p 12 | ||
| 998 | |g 121842568 |a Michel, Maurice Stephan |m 121842568:Michel, Maurice Stephan |d 60000 |d 63100 |e 60000PM121842568 |e 63100PM121842568 |k 0/60000/ |k 1/60000/63100/ |p 11 | ||
| 998 | |g 120890046 |a Fröhling, Stefan |m 120890046:Fröhling, Stefan |d 50000 |e 50000PF120890046 |k 0/50000/ |p 10 | ||
| 998 | |g 1030402280 |a Gaiser, Timo |m 1030402280:Gaiser, Timo |d 60000 |d 63400 |e 60000PG1030402280 |e 63400PG1030402280 |k 0/60000/ |k 1/60000/63400/ |p 9 | ||
| 998 | |g 1271490005 |a Steeg, Matthias |m 1271490005:Steeg, Matthias |d 60000 |d 63400 |e 60000PS1271490005 |e 63400PS1271490005 |k 0/60000/ |k 1/60000/63400/ |p 8 | ||
| 998 | |g 118332331X |a Neuberger, Manuel |m 118332331X:Neuberger, Manuel |d 60000 |d 63100 |e 60000PN118332331X |e 63100PN118332331X |k 0/60000/ |k 1/60000/63100/ |p 7 | ||
| 998 | |g 1028335679 |a Worst, Thomas |m 1028335679:Worst, Thomas |d 60000 |d 63100 |e 60000PW1028335679 |e 63100PW1028335679 |k 0/60000/ |k 1/60000/63100/ |p 6 | ||
| 998 | |g 1043808930 |a Braun, Volker |m 1043808930:Braun, Volker |d 60000 |e 60000PB1043808930 |k 0/60000/ |p 5 | ||
| 998 | |g 1183323255 |a Wessels, Frederik |m 1183323255:Wessels, Frederik |d 60000 |d 63100 |e 60000PW1183323255 |e 63100PW1183323255 |k 0/60000/ |k 1/60000/63100/ |p 1 |x j | ||
| 999 | |a KXP-PPN1859201407 |e 4374245898 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"13 S."}],"id":{"doi":["10.23736/S2724-6051.22.04758-9"],"eki":["1859201407"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title_sort":"Artificial intelligence to predict oncological outcome directly from hematoxylin and eosin-stained slides in urology","title":"Artificial intelligence to predict oncological outcome directly from hematoxylin and eosin-stained slides in urology"}],"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"March 11, 2022"}],"relHost":[{"origin":[{"dateIssuedDisp":"2021-","publisher":"Edizioni Minerva Medica","publisherPlace":"Torino","dateIssuedKey":"2021"}],"id":{"issn":["2724-6442"],"eki":["1757056777"],"zdb":["3062844-1"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Minerva urology and nephrology","subtitle":"a journal on nephrology and urology","title_sort":"Minerva urology and nephrology"}],"recId":"1757056777","type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Artificial intelligence to predict oncological outcome directly from hematoxylin and eosin-stained slides in urologyMinerva urology and nephrology","note":["Gesehen am 04. Mai 2021"],"pubHistory":["73, 1 (February 2021)-"],"part":{"extent":"13","pages":"538-550","issue":"5","text":"74(2022), 5 vom: Okt., Seite 538-550","year":"2022","volume":"74"},"language":["eng"]}],"name":{"displayForm":["Frederik Wessels, Sara Kuntz, Eva Krieghoff-Henning, Max Schmitt, Volker Braun, Thomas S. Worst, Manuel Neuberger, Matthias Steeg, Timo Gaiser, Stefan Fröhling, Maurice-Stephan Michel, Philipp Nuhn, Titus J. Brinker"]},"language":["eng"],"note":["Gesehen am 11.09.2023"],"person":[{"given":"Frederik","display":"Wessels, Frederik","family":"Wessels","role":"aut"},{"given":"Sara","display":"Kuntz, Sara","family":"Kuntz","role":"aut"},{"family":"Krieghoff-Henning","role":"aut","given":"Eva","display":"Krieghoff-Henning, Eva"},{"family":"Schmitt","role":"aut","display":"Schmitt, Max","given":"Max"},{"display":"Braun, Volker","given":"Volker","family":"Braun","role":"aut"},{"role":"aut","family":"Worst","display":"Worst, Thomas","given":"Thomas"},{"role":"aut","family":"Neuberger","given":"Manuel","display":"Neuberger, Manuel"},{"role":"aut","family":"Steeg","display":"Steeg, Matthias","given":"Matthias"},{"role":"aut","family":"Gaiser","given":"Timo","display":"Gaiser, Timo"},{"role":"aut","family":"Fröhling","given":"Stefan","display":"Fröhling, Stefan"},{"family":"Michel","role":"aut","display":"Michel, Maurice Stephan","given":"Maurice Stephan"},{"role":"aut","family":"Nuhn","given":"Philipp","display":"Nuhn, Philipp"},{"family":"Brinker","role":"aut","given":"Titus Josef","display":"Brinker, Titus Josef"}],"recId":"1859201407"} | ||
| SRT | |a WESSELSFREARTIFICIAL1120 | ||