Artificial intelligence to predict oncological outcome directly from hematoxylin and eosin-stained slides in urology

INTRODUCTION: Artificial intelligence (AI) has been successfully applied for automatic tumor detection and grading in histopathological image analysis in urologic oncology. The aim of this review was to assess the applicability of these approaches in image-based oncological outcome prediction. EVIDE...

Full description

Saved in:
Bibliographic Details
Main Authors: Wessels, Frederik (Author) , Kuntz, Sara (Author) , Krieghoff-Henning, Eva (Author) , Schmitt, Max (Author) , Braun, Volker (Author) , Worst, Thomas (Author) , Neuberger, Manuel (Author) , Steeg, Matthias (Author) , Gaiser, Timo (Author) , Fröhling, Stefan (Author) , Michel, Maurice Stephan (Author) , Nuhn, Philipp (Author) , Brinker, Titus Josef (Author)
Format: Article (Journal)
Language:English
Published: March 11, 2022
In: Minerva urology and nephrology
Year: 2022, Volume: 74, Issue: 5, Pages: 538-550
ISSN:2724-6442
DOI:10.23736/S2724-6051.22.04758-9
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.23736/S2724-6051.22.04758-9
Verlag, lizenzpflichtig, Volltext: https://www.minervamedica.it/en/journals/minerva-urology-nephrology/article.php?cod=R19Y2022N05A0538
Get full text
Author Notes:Frederik Wessels, Sara Kuntz, Eva Krieghoff-Henning, Max Schmitt, Volker Braun, Thomas S. Worst, Manuel Neuberger, Matthias Steeg, Timo Gaiser, Stefan Fröhling, Maurice-Stephan Michel, Philipp Nuhn, Titus J. Brinker

MARC

LEADER 00000caa a2200000 c 4500
001 1859201407
003 DE-627
005 20240307084423.0
007 cr uuu---uuuuu
008 230911s2022 xx |||||o 00| ||eng c
024 7 |a 10.23736/S2724-6051.22.04758-9  |2 doi 
035 |a (DE-627)1859201407 
035 |a (DE-599)KXP1859201407 
035 |a (OCoLC)1425216957 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Wessels, Frederik  |d 1990-  |e VerfasserIn  |0 (DE-588)1183323255  |0 (DE-627)1663137226  |4 aut 
245 1 0 |a Artificial intelligence to predict oncological outcome directly from hematoxylin and eosin-stained slides in urology  |c Frederik Wessels, Sara Kuntz, Eva Krieghoff-Henning, Max Schmitt, Volker Braun, Thomas S. Worst, Manuel Neuberger, Matthias Steeg, Timo Gaiser, Stefan Fröhling, Maurice-Stephan Michel, Philipp Nuhn, Titus J. Brinker 
264 1 |c March 11, 2022 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 11.09.2023 
520 |a INTRODUCTION: Artificial intelligence (AI) has been successfully applied for automatic tumor detection and grading in histopathological image analysis in urologic oncology. The aim of this review was to assess the applicability of these approaches in image-based oncological outcome prediction. EVIDENCE ACQUISITION: A systematic literature search was conducted using the databases MEDLINE through PubMed and Web of Science up to April 20, 2021. Studies investigating AI approaches to determine the risk of recurrence, metastasis, or survival directly from H&E-stained tissue sections in prostate, renal cell or urothelial carcinomawere included. Characteristics of the AI approach and performance metrics were extracted and summarized. Risk of bias (RoB) was assessed using the PROBAST tool. EVIDENCE SYNTHESIS: 16 studies yielding a total of 6658 patients and reporting on 17 outcome predictions were included. Six studies focused on renal cell, six on prostate and three on urothelial carcinoma while one study investigatedrenal cell and urothelial carcinoma. Handcrafted feature extraction was used in five, a convolutional neural network (CNN) in six and a deep feature extraction in four studies. One study compared a CNN with handcrafted feature extraction. In seven outcome predictions, a multivariable comparison with clinicopathological parameters was reported. Five of them showed statistically significant hazard ratios for the AI’s model’s-prediction. However, RoB was high in 15 outcome predictions and unclear in two. CONCLUSIONS: The included studies are promising but predominantly early pilot studies, therefore primarily highlighting the potential of AI approaches. Additional well-designed studies are needed to assess the actual clinical applicability. 
700 1 |a Kuntz, Sara  |d 1984-  |e VerfasserIn  |0 (DE-588)1124269797  |0 (DE-627)877984786  |0 (DE-576)482422823  |4 aut 
700 1 |a Krieghoff-Henning, Eva  |d 1976-  |e VerfasserIn  |0 (DE-588)132407914  |0 (DE-627)52267786X  |0 (DE-576)299126706  |4 aut 
700 1 |a Schmitt, Max  |e VerfasserIn  |0 (DE-588)1236577469  |0 (DE-627)1761961586  |4 aut 
700 1 |a Braun, Volker  |d 1972-  |e VerfasserIn  |0 (DE-588)1043808930  |0 (DE-627)770950825  |0 (DE-576)395926858  |4 aut 
700 1 |a Worst, Thomas  |d 1985-  |e VerfasserIn  |0 (DE-588)1028335679  |0 (DE-627)73058500X  |0 (DE-576)375827501  |4 aut 
700 1 |a Neuberger, Manuel  |e VerfasserIn  |0 (DE-588)118332331X  |0 (DE-627)1663137250  |4 aut 
700 1 |a Steeg, Matthias  |e VerfasserIn  |0 (DE-588)1271490005  |0 (DE-627)1820321053  |4 aut 
700 1 |a Gaiser, Timo  |d 1975-  |e VerfasserIn  |0 (DE-588)1030402280  |0 (DE-627)735221685  |0 (DE-576)378226533  |4 aut 
700 1 |a Fröhling, Stefan  |d 1969-  |e VerfasserIn  |0 (DE-588)120890046  |0 (DE-627)080950302  |0 (DE-576)188733930  |4 aut 
700 1 |a Michel, Maurice Stephan  |d 1970-  |e VerfasserIn  |0 (DE-588)121842568  |0 (DE-627)705674134  |0 (DE-576)29291363X  |4 aut 
700 1 |a Nuhn, Philipp  |d 1981-  |e VerfasserIn  |0 (DE-588)136112951  |0 (DE-627)694090808  |0 (DE-576)30083909X  |4 aut 
700 1 |a Brinker, Titus Josef  |d 1990-  |e VerfasserIn  |0 (DE-588)1156309395  |0 (DE-627)1018860487  |0 (DE-576)502097434  |4 aut 
773 0 8 |i Enthalten in  |t Minerva urology and nephrology  |d Torino : Edizioni Minerva Medica, 2021  |g 74(2022), 5 vom: Okt., Seite 538-550  |h Online-Ressource  |w (DE-627)1757056777  |w (DE-600)3062844-1  |x 2724-6442  |7 nnas  |a Artificial intelligence to predict oncological outcome directly from hematoxylin and eosin-stained slides in urology 
773 1 8 |g volume:74  |g year:2022  |g number:5  |g month:10  |g pages:538-550  |g extent:13  |a Artificial intelligence to predict oncological outcome directly from hematoxylin and eosin-stained slides in urology 
787 0 8 |i Ergänzung  |a Rivero Belenchón, Inés  |t Comment on “Artificial intelligence to predict oncological outcome directly from hematoxylin and eosin-stained slides in urology: da systematic review”  |d 2022  |w (DE-627)1859206085 
856 4 0 |u https://doi.org/10.23736/S2724-6051.22.04758-9  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.minervamedica.it/en/journals/minerva-urology-nephrology/article.php?cod=R19Y2022N05A0538  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230911 
993 |a Article 
994 |a 2022 
998 |g 1156309395  |a Brinker, Titus Josef  |m 1156309395:Brinker, Titus Josef  |d 50000  |e 50000PB1156309395  |k 0/50000/  |p 13  |y j 
998 |g 136112951  |a Nuhn, Philipp  |m 136112951:Nuhn, Philipp  |d 60000  |d 63100  |e 60000PN136112951  |e 63100PN136112951  |k 0/60000/  |k 1/60000/63100/  |p 12 
998 |g 121842568  |a Michel, Maurice Stephan  |m 121842568:Michel, Maurice Stephan  |d 60000  |d 63100  |e 60000PM121842568  |e 63100PM121842568  |k 0/60000/  |k 1/60000/63100/  |p 11 
998 |g 120890046  |a Fröhling, Stefan  |m 120890046:Fröhling, Stefan  |d 50000  |e 50000PF120890046  |k 0/50000/  |p 10 
998 |g 1030402280  |a Gaiser, Timo  |m 1030402280:Gaiser, Timo  |d 60000  |d 63400  |e 60000PG1030402280  |e 63400PG1030402280  |k 0/60000/  |k 1/60000/63400/  |p 9 
998 |g 1271490005  |a Steeg, Matthias  |m 1271490005:Steeg, Matthias  |d 60000  |d 63400  |e 60000PS1271490005  |e 63400PS1271490005  |k 0/60000/  |k 1/60000/63400/  |p 8 
998 |g 118332331X  |a Neuberger, Manuel  |m 118332331X:Neuberger, Manuel  |d 60000  |d 63100  |e 60000PN118332331X  |e 63100PN118332331X  |k 0/60000/  |k 1/60000/63100/  |p 7 
998 |g 1028335679  |a Worst, Thomas  |m 1028335679:Worst, Thomas  |d 60000  |d 63100  |e 60000PW1028335679  |e 63100PW1028335679  |k 0/60000/  |k 1/60000/63100/  |p 6 
998 |g 1043808930  |a Braun, Volker  |m 1043808930:Braun, Volker  |d 60000  |e 60000PB1043808930  |k 0/60000/  |p 5 
998 |g 1183323255  |a Wessels, Frederik  |m 1183323255:Wessels, Frederik  |d 60000  |d 63100  |e 60000PW1183323255  |e 63100PW1183323255  |k 0/60000/  |k 1/60000/63100/  |p 1  |x j 
999 |a KXP-PPN1859201407  |e 4374245898 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"13 S."}],"id":{"doi":["10.23736/S2724-6051.22.04758-9"],"eki":["1859201407"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title_sort":"Artificial intelligence to predict oncological outcome directly from hematoxylin and eosin-stained slides in urology","title":"Artificial intelligence to predict oncological outcome directly from hematoxylin and eosin-stained slides in urology"}],"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"March 11, 2022"}],"relHost":[{"origin":[{"dateIssuedDisp":"2021-","publisher":"Edizioni Minerva Medica","publisherPlace":"Torino","dateIssuedKey":"2021"}],"id":{"issn":["2724-6442"],"eki":["1757056777"],"zdb":["3062844-1"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Minerva urology and nephrology","subtitle":"a journal on nephrology and urology","title_sort":"Minerva urology and nephrology"}],"recId":"1757056777","type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Artificial intelligence to predict oncological outcome directly from hematoxylin and eosin-stained slides in urologyMinerva urology and nephrology","note":["Gesehen am 04. Mai 2021"],"pubHistory":["73, 1 (February 2021)-"],"part":{"extent":"13","pages":"538-550","issue":"5","text":"74(2022), 5 vom: Okt., Seite 538-550","year":"2022","volume":"74"},"language":["eng"]}],"name":{"displayForm":["Frederik Wessels, Sara Kuntz, Eva Krieghoff-Henning, Max Schmitt, Volker Braun, Thomas S. Worst, Manuel Neuberger, Matthias Steeg, Timo Gaiser, Stefan Fröhling, Maurice-Stephan Michel, Philipp Nuhn, Titus J. Brinker"]},"language":["eng"],"note":["Gesehen am 11.09.2023"],"person":[{"given":"Frederik","display":"Wessels, Frederik","family":"Wessels","role":"aut"},{"given":"Sara","display":"Kuntz, Sara","family":"Kuntz","role":"aut"},{"family":"Krieghoff-Henning","role":"aut","given":"Eva","display":"Krieghoff-Henning, Eva"},{"family":"Schmitt","role":"aut","display":"Schmitt, Max","given":"Max"},{"display":"Braun, Volker","given":"Volker","family":"Braun","role":"aut"},{"role":"aut","family":"Worst","display":"Worst, Thomas","given":"Thomas"},{"role":"aut","family":"Neuberger","given":"Manuel","display":"Neuberger, Manuel"},{"role":"aut","family":"Steeg","display":"Steeg, Matthias","given":"Matthias"},{"role":"aut","family":"Gaiser","given":"Timo","display":"Gaiser, Timo"},{"role":"aut","family":"Fröhling","given":"Stefan","display":"Fröhling, Stefan"},{"family":"Michel","role":"aut","display":"Michel, Maurice Stephan","given":"Maurice Stephan"},{"role":"aut","family":"Nuhn","given":"Philipp","display":"Nuhn, Philipp"},{"family":"Brinker","role":"aut","given":"Titus Josef","display":"Brinker, Titus Josef"}],"recId":"1859201407"} 
SRT |a WESSELSFREARTIFICIAL1120