Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Mitral valve repair is a complex minimally invasive surgery of the heart valve. In this context, suture detection from endoscopic images is a highly relevant task that provides quantitative information to analyse suturing patterns, assess prosthetic configurations and produce augmented reality visua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sharan, Lalith (VerfasserIn) , Romano, Gabriele (VerfasserIn) , Brand, Julian (VerfasserIn) , Kelm, Halvar (VerfasserIn) , Karck, Matthias (VerfasserIn) , De Simone, Raffaele (VerfasserIn) , Engelhardt, Sandy (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 08 November 2021
In: International journal of computer assisted radiology and surgery
Year: 2021, Jahrgang: 16, Heft: 12, Pages: 2107-2117
ISSN:1861-6429
DOI:10.1007/s11548-021-02523-w
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s11548-021-02523-w
Volltext
Verfasserangaben:Lalith Sharan, Gabriele Romano, Julian Brand, Halvar Kelm, Matthias Karck, Raffaele De Simone, Sandy Engelhardt
Beschreibung
Zusammenfassung:Mitral valve repair is a complex minimally invasive surgery of the heart valve. In this context, suture detection from endoscopic images is a highly relevant task that provides quantitative information to analyse suturing patterns, assess prosthetic configurations and produce augmented reality visualisations. Facial or anatomical landmark detection tasks typically contain a fixed number of landmarks, and use regression or fixed heatmap-based approaches to localize the landmarks. However in endoscopy, there are a varying number of sutures in every image, and the sutures may occur at any location in the annulus, as they are not semantically unique.
Beschreibung:Gesehen am 15.09.2023
Beschreibung:Online Resource
ISSN:1861-6429
DOI:10.1007/s11548-021-02523-w