Homogenization of a mineral dissolution and precipitation model involving free boundaries at the micro scale

In this work we present the homogenization of a reaction-diffusion model that includes an evolving microstructure. Such type of problems model, for example, mineral dissolution and precipitation in a porous medium. In the initial state, the microscopic geometry is a periodically perforated domain, e...

Full description

Saved in:
Bibliographic Details
Main Authors: Gahn, Markus (Author) , Pop, Iuliu Sorin (Author)
Format: Article (Journal)
Language:English
Published: 2023
In: Journal of differential equations
Year: 2023, Volume: 343, Pages: 90-151
ISSN:1090-2732
DOI:10.1016/j.jde.2022.10.006
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jde.2022.10.006
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0022039622005757
Get full text
Author Notes:M. Gahn, I.S. Pop

MARC

LEADER 00000caa a2200000 c 4500
001 1859805558
003 DE-627
005 20240307054115.0
007 cr uuu---uuuuu
008 230918s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jde.2022.10.006  |2 doi 
035 |a (DE-627)1859805558 
035 |a (DE-599)KXP1859805558 
035 |a (OCoLC)1425212272 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Gahn, Markus  |e VerfasserIn  |0 (DE-588)112652302X  |0 (DE-627)880999675  |0 (DE-576)484545841  |4 aut 
245 1 0 |a Homogenization of a mineral dissolution and precipitation model involving free boundaries at the micro scale  |c M. Gahn, I.S. Pop 
264 1 |c 2023 
300 |a 62 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar 18 October 2022, Version des Artikels 18 October 2022 
500 |a Gesehen am 18.09.2023 
520 |a In this work we present the homogenization of a reaction-diffusion model that includes an evolving microstructure. Such type of problems model, for example, mineral dissolution and precipitation in a porous medium. In the initial state, the microscopic geometry is a periodically perforated domain, each perforation being a spherical solid grains. A small parameter ϵ is characterizing both the distance between two neighboring grains, and the radii of the grains. For each grain, the radius depends on the unknown (the solute concentration) at its surface. Therefore, the radii of the grains change in time and are model unknowns, so the model involves free boundaries at the micro scale. In a first step, we transform the evolving micro domain to a fixed, periodically domain. Using the Rothe-method, we prove the existence of a weak solution and obtain a priori estimates that are uniform with respect to ϵ. Finally, letting ϵ→0, we derive a macroscopic model, the solution of which approximates the micro-scale solution. For this, we use the method of two-scale convergence, and obtain strong compactness results enabling to pass to the limit in the nonlinear terms. 
650 4 |a Evolving micro-domain 
650 4 |a Free boundaries 
650 4 |a Homogenization 
650 4 |a Reaction-diffusion equation 
700 1 |a Pop, Iuliu Sorin  |d 1969-  |e VerfasserIn  |0 (DE-588)1153089971  |0 (DE-627)1014494532  |0 (DE-576)177823038  |4 aut 
773 0 8 |i Enthalten in  |t Journal of differential equations  |d Orlando, Fla. : Elsevier, 1965  |g 343(2023) vom: Jan., Seite 90-151  |h Online-Ressource  |w (DE-627)266892566  |w (DE-600)1469173-5  |w (DE-576)103373209  |x 1090-2732  |7 nnas  |a Homogenization of a mineral dissolution and precipitation model involving free boundaries at the micro scale 
773 1 8 |g volume:343  |g year:2023  |g month:01  |g pages:90-151  |g extent:62  |a Homogenization of a mineral dissolution and precipitation model involving free boundaries at the micro scale 
856 4 0 |u https://doi.org/10.1016/j.jde.2022.10.006  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0022039622005757  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230918 
993 |a Article 
994 |a 2023 
998 |g 112652302X  |a Gahn, Markus  |m 112652302X:Gahn, Markus  |d 700000  |d 708000  |e 700000PG112652302X  |e 708000PG112652302X  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN1859805558  |e 4377374273 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Online verfügbar 18 October 2022, Version des Artikels 18 October 2022","Gesehen am 18.09.2023"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"2023"}],"person":[{"display":"Gahn, Markus","given":"Markus","family":"Gahn","role":"aut"},{"family":"Pop","given":"Iuliu Sorin","display":"Pop, Iuliu Sorin","role":"aut"}],"title":[{"title":"Homogenization of a mineral dissolution and precipitation model involving free boundaries at the micro scale","title_sort":"Homogenization of a mineral dissolution and precipitation model involving free boundaries at the micro scale"}],"language":["eng"],"physDesc":[{"extent":"62 S."}],"name":{"displayForm":["M. Gahn, I.S. Pop"]},"relHost":[{"recId":"266892566","id":{"zdb":["1469173-5"],"issn":["1090-2732"],"eki":["266892566"]},"language":["eng"],"disp":"Homogenization of a mineral dissolution and precipitation model involving free boundaries at the micro scaleJournal of differential equations","physDesc":[{"extent":"Online-Ressource"}],"part":{"text":"343(2023) vom: Jan., Seite 90-151","year":"2023","extent":"62","pages":"90-151","volume":"343"},"type":{"bibl":"periodical","media":"Online-Ressource"},"origin":[{"publisher":"Elsevier ; Academic Press ; Academic Press","dateIssuedDisp":"1965-","publisherPlace":"Orlando, Fla. ; New York, NY [u.a.] ; Orlando, Fla.","dateIssuedKey":"1965"}],"title":[{"title_sort":"Journal of differential equations","title":"Journal of differential equations"}],"pubHistory":["1.1965 -"],"note":["Gesehen am 16.07.13"]}],"recId":"1859805558","id":{"eki":["1859805558"],"doi":["10.1016/j.jde.2022.10.006"]}} 
SRT |a GAHNMARKUSHOMOGENIZA2023