Euclid preparation: XXIII. derivation of galaxy physical properties with deep machine learning using mock fluxes and H-band images

Next-generation telescopes, like Euclid, Rubin/LSST, and Roman, will open new windows on the Universe, allowing us to infer physical properties for tens of millions of galaxies. Machine-learning methods are increasingly becoming the most efficient tools to handle this enormous amount of data, becaus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bisigello, Laura (VerfasserIn) , Jahnke, Knud (VerfasserIn) , Rix, Hans-Walter (VerfasserIn) , Seidel, Gregor (VerfasserIn) , Sakr, Ziad (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: April 2023
In: Monthly notices of the Royal Astronomical Society
Year: 2023, Jahrgang: 520, Heft: 3, Pages: 3529-3548
ISSN:1365-2966
DOI:10.1093/mnras/stac3810
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1093/mnras/stac3810
Volltext
Verfasserangaben:Euclid Collaboration*

MARC

LEADER 00000caa a2200000 c 4500
001 1860133266
003 DE-627
005 20250519082040.0
007 cr uuu---uuuuu
008 230921s2023 xx |||||o 00| ||eng c
024 7 |a 10.1093/mnras/stac3810  |2 doi 
035 |a (DE-627)1860133266 
035 |a (DE-599)KXP1860133266 
035 |a (OCoLC)1425212138 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Bisigello, Laura  |e VerfasserIn  |0 (DE-588)1303201917  |0 (DE-627)1860133975  |4 aut 
245 1 0 |a Euclid preparation  |b XXIII. derivation of galaxy physical properties with deep machine learning using mock fluxes and H-band images  |c Euclid Collaboration* 
246 3 0 |a twenty-three 
264 1 |c April 2023 
300 |b Illustrationen 
300 |a 20 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Veröffentlicht: 09. Januar 2022 
500 |a *Euclid Collaboration: L. Bisigello, K. Jahnke, H.-W. Rix, G. Seidel, Z. Sakr [und 194 weitere Personen] 
500 |a Gesehen am 21.09.2023 
520 |a Next-generation telescopes, like Euclid, Rubin/LSST, and Roman, will open new windows on the Universe, allowing us to infer physical properties for tens of millions of galaxies. Machine-learning methods are increasingly becoming the most efficient tools to handle this enormous amount of data, because they are often faster and more accurate than traditional methods. We investigate how well redshifts, stellar masses, and star-formation rates (SFRs) can be measured with deep-learning algorithms for observed galaxies within data mimicking the Euclid and Rubin/LSST surveys. We find that deep-learning neural networks and convolutional neural networks (CNNs), which are dependent on the parameter space of the training sample, perform well in measuring the properties of these galaxies and have a better accuracy than methods based on spectral energy distribution fitting. CNNs allow the processing of multiband magnitudes together with HE-band images. We find that the estimates of stellar masses improve with the use of an image, but those of redshift and SFR do not. Our best results are deriving (i) the redshift within a normalized error of <0.15 for 99.9 per cent of the galaxies with signal-to-noise ratio >3 in the HE band; (ii) the stellar mass within a factor of two (⁠∼0.3 dex⁠) for 99.5 per cent of the considered galaxies; and (iii) the SFR within a factor of two (⁠∼0.3 dex⁠) for ∼70 per cent of the sample. We discuss the implications of our work for application to surveys as well as how measurements of these galaxy parameters can be improved with deep learning. 
700 1 |a Jahnke, Knud  |e VerfasserIn  |0 (DE-588)1200875141  |0 (DE-627)1683870255  |4 aut 
700 1 |a Rix, Hans-Walter  |d 1964-  |e VerfasserIn  |0 (DE-588)1041372485  |0 (DE-627)767088360  |0 (DE-576)393077462  |4 aut 
700 1 |a Seidel, Gregor  |d 1977-  |e VerfasserIn  |0 (DE-588)139967559  |0 (DE-627)703521993  |0 (DE-576)314004769  |4 aut 
700 1 |a Sakr, Ziad  |e VerfasserIn  |0 (DE-588)1296375315  |0 (DE-627)1852803258  |4 aut 
773 0 8 |i Enthalten in  |a Royal Astronomical Society  |t Monthly notices of the Royal Astronomical Society  |d Oxford : Oxford Univ. Press, 1827  |g 520(2023), 3 vom: Apr., Seite 3529-3548  |h Online-Ressource  |w (DE-627)314059164  |w (DE-600)2016084-7  |w (DE-576)090955420  |x 1365-2966  |7 nnas 
773 1 8 |g volume:520  |g year:2023  |g number:3  |g month:04  |g pages:3529-3548  |g extent:20  |a Euclid preparation XXIII. derivation of galaxy physical properties with deep machine learning using mock fluxes and H-band images 
856 4 0 |u https://doi.org/10.1093/mnras/stac3810  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20230921 
993 |a Article 
994 |a 2023 
998 |g 1296375315  |a Sakr, Ziad  |m 1296375315:Sakr, Ziad  |d 130000  |d 130300  |e 130000PS1296375315  |e 130300PS1296375315  |k 0/130000/  |k 1/130000/130300/  |p 191 
998 |g 139967559  |a Seidel, Gregor  |m 139967559:Seidel, Gregor  |d 130000  |e 130000PS139967559  |k 0/130000/  |p 108 
998 |g 1041372485  |a Rix, Hans-Walter  |m 1041372485:Rix, Hans-Walter  |d 130000  |e 130000PR1041372485  |k 0/130000/  |p 97 
998 |g 1200875141  |a Jahnke, Knud  |m 1200875141:Jahnke, Knud  |d 130000  |e 130000PJ1200875141  |k 0/130000/  |p 59 
999 |a KXP-PPN1860133266  |e 4378652692 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"recId":"314059164","origin":[{"publisher":"Oxford Univ. Press ; Blackwell ; Wiley-Blackwell","dateIssuedDisp":"1827-","dateIssuedKey":"1827","publisherPlace":"Oxford ; Oxford [u.a.] ; Oxford [u.a.]"}],"id":{"zdb":["2016084-7"],"doi":["10.1111/(ISSN)1365-2966"],"eki":["314059164"],"issn":["1365-2966"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Monthly notices of the Royal Astronomical Society","title":"Monthly notices of the Royal Astronomical Society"}],"note":["Gesehen am 15.01.2018"],"pubHistory":["1.1827 -"],"part":{"year":"2023","volume":"520","issue":"3","pages":"3529-3548","extent":"20","text":"520(2023), 3 vom: Apr., Seite 3529-3548"},"language":["eng"],"disp":"Royal Astronomical SocietyMonthly notices of the Royal Astronomical Society","type":{"bibl":"periodical","media":"Online-Ressource"},"corporate":[{"role":"aut","display":"Royal Astronomical Society"}]}],"origin":[{"dateIssuedDisp":"April 2023","dateIssuedKey":"2023"}],"title":[{"title_sort":"Euclid preparation","subtitle":"XXIII. derivation of galaxy physical properties with deep machine learning using mock fluxes and H-band images","title":"Euclid preparation"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"doi":["10.1093/mnras/stac3810"],"eki":["1860133266"]},"physDesc":[{"extent":"20 S.","noteIll":"Illustrationen"}],"person":[{"family":"Bisigello","role":"aut","display":"Bisigello, Laura","given":"Laura"},{"given":"Knud","display":"Jahnke, Knud","role":"aut","family":"Jahnke"},{"family":"Rix","role":"aut","given":"Hans-Walter","display":"Rix, Hans-Walter"},{"display":"Seidel, Gregor","given":"Gregor","role":"aut","family":"Seidel"},{"given":"Ziad","display":"Sakr, Ziad","family":"Sakr","role":"aut"}],"recId":"1860133266","note":["Veröffentlicht: 09. Januar 2022","*Euclid Collaboration: L. Bisigello, K. Jahnke, H.-W. Rix, G. Seidel, Z. Sakr [und 194 weitere Personen]","Gesehen am 21.09.2023"],"name":{"displayForm":["Euclid Collaboration*"]},"language":["eng"]} 
SRT |a BISIGELLOLEUCLIDPREP2023