Quantum approximate optimization algorithm for qudit systems
A frequent starting point of quantum computation platforms is the two-state quantum system, i.e., the qubit. However, in the context of integer optimization problems, relevant to scheduling optimization and operations research, it is often more resource-efficient to employ quantum systems with more...
Gespeichert in:
| Hauptverfasser: | , , , , , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
9 June 2023
|
| In: |
Physical review
Year: 2023, Jahrgang: 107, Heft: 6, Pages: 1-14 |
| ISSN: | 2469-9934 |
| DOI: | 10.1103/PhysRevA.107.062410 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevA.107.062410 Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.107.062410 |
| Verfasserangaben: | Yannick Deller, Sebastian Schmitt, Maciej Lewenstein, Steve Lenk, Marika Federer, Fred Jendrzejewski, Philipp Hauke, and Valentin Kasper |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 186021522X | ||
| 003 | DE-627 | ||
| 005 | 20240307053304.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 230925s2023 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1103/PhysRevA.107.062410 |2 doi | |
| 035 | |a (DE-627)186021522X | ||
| 035 | |a (DE-599)KXP186021522X | ||
| 035 | |a (OCoLC)1425212083 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Deller, Yannick |e VerfasserIn |0 (DE-588)1303855216 |0 (DE-627)1860216110 |4 aut | |
| 245 | 1 | 0 | |a Quantum approximate optimization algorithm for qudit systems |c Yannick Deller, Sebastian Schmitt, Maciej Lewenstein, Steve Lenk, Marika Federer, Fred Jendrzejewski, Philipp Hauke, and Valentin Kasper |
| 264 | 1 | |c 9 June 2023 | |
| 300 | |a 14 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 25.09.2023 | ||
| 520 | |a A frequent starting point of quantum computation platforms is the two-state quantum system, i.e., the qubit. However, in the context of integer optimization problems, relevant to scheduling optimization and operations research, it is often more resource-efficient to employ quantum systems with more than two basis states, so-called qudits. Here, we discuss the quantum approximate optimization algorithm (QAOA) for qudit systems. We illustrate how the QAOA can be used to formulate a variety of integer optimization problems such as graph coloring problems or electric vehicle charging optimization. In addition, we comment on the implementation of constraints and describe three methods to include these in a quantum circuit of a QAOA by penalty contributions to the cost Hamiltonian, conditional gates using ancilla qubits, and a dynamical decoupling strategy. Finally, as a showcase of qudit-based QAOA, we present numerical results for a charging optimization problem mapped onto a maximum-k-graph-coloring problem. Our work illustrates the flexibility of qudit systems to solve integer optimization problems. | ||
| 700 | 1 | |a Schmitt, Sebastian |e VerfasserIn |4 aut | |
| 700 | 1 | |a Lewenstein, Maciej |e VerfasserIn |4 aut | |
| 700 | 1 | |a Lenk, Steve |e VerfasserIn |4 aut | |
| 700 | 1 | |a Federer, Marika |e VerfasserIn |4 aut | |
| 700 | 1 | |a Jendrzejewski, Fred |e VerfasserIn |0 (DE-588)1140125591 |0 (DE-627)898241529 |0 (DE-576)493655913 |4 aut | |
| 700 | 1 | |a Hauke, Philipp |e VerfasserIn |4 aut | |
| 700 | 1 | |a Kasper, Valentin |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Physical review |d Woodbury, NY : Inst., 2016 |g 107(2023), 6 vom: Juni, Artikel-ID 062410, Seite 1-14 |h Online-Ressource |w (DE-627)845695479 |w (DE-600)2844156-4 |w (DE-576)454495854 |x 2469-9934 |7 nnas |a Quantum approximate optimization algorithm for qudit systems |
| 773 | 1 | 8 | |g volume:107 |g year:2023 |g number:6 |g month:06 |g elocationid:062410 |g pages:1-14 |g extent:14 |a Quantum approximate optimization algorithm for qudit systems |
| 856 | 4 | 0 | |u https://doi.org/10.1103/PhysRevA.107.062410 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://link.aps.org/doi/10.1103/PhysRevA.107.062410 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20230925 | ||
| 993 | |a Article | ||
| 994 | |a 2023 | ||
| 998 | |g 1140125591 |a Jendrzejewski, Fred |m 1140125591:Jendrzejewski, Fred |p 6 | ||
| 998 | |g 1303855216 |a Deller, Yannick |m 1303855216:Deller, Yannick |d 130000 |d 130700 |e 130000PD1303855216 |e 130700PD1303855216 |k 0/130000/ |k 1/130000/130700/ |p 1 |x j | ||
| 999 | |a KXP-PPN186021522X |e 4378832712 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 25.09.2023"],"language":["eng"],"recId":"186021522X","person":[{"roleDisplay":"VerfasserIn","display":"Deller, Yannick","role":"aut","family":"Deller","given":"Yannick"},{"display":"Schmitt, Sebastian","roleDisplay":"VerfasserIn","role":"aut","family":"Schmitt","given":"Sebastian"},{"family":"Lewenstein","given":"Maciej","display":"Lewenstein, Maciej","roleDisplay":"VerfasserIn","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Lenk, Steve","role":"aut","family":"Lenk","given":"Steve"},{"given":"Marika","family":"Federer","role":"aut","roleDisplay":"VerfasserIn","display":"Federer, Marika"},{"display":"Jendrzejewski, Fred","roleDisplay":"VerfasserIn","role":"aut","family":"Jendrzejewski","given":"Fred"},{"family":"Hauke","given":"Philipp","roleDisplay":"VerfasserIn","display":"Hauke, Philipp","role":"aut"},{"role":"aut","display":"Kasper, Valentin","roleDisplay":"VerfasserIn","given":"Valentin","family":"Kasper"}],"title":[{"title":"Quantum approximate optimization algorithm for qudit systems","title_sort":"Quantum approximate optimization algorithm for qudit systems"}],"physDesc":[{"extent":"14 S."}],"relHost":[{"name":{"displayForm":["publ. by The American Institute of Physics"]},"id":{"issn":["2469-9934"],"zdb":["2844156-4"],"eki":["845695479"]},"origin":[{"publisherPlace":"Woodbury, NY","dateIssuedDisp":"2016-","publisher":"Inst.","dateIssuedKey":"2016"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Physical review","title":"Physical review"}],"recId":"845695479","language":["eng"],"corporate":[{"display":"American Institute of Physics","roleDisplay":"Herausgebendes Organ","role":"isb"},{"display":"American Physical Society","roleDisplay":"Herausgebendes Organ","role":"isb"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Quantum approximate optimization algorithm for qudit systemsPhysical review","titleAlt":[{"title":"Atomic, molecular, and optical physics and quantum information"}],"part":{"extent":"14","text":"107(2023), 6 vom: Juni, Artikel-ID 062410, Seite 1-14","volume":"107","issue":"6","pages":"1-14","year":"2023"},"pubHistory":["Vol. 93, Iss. 1, January 2016-"]}],"name":{"displayForm":["Yannick Deller, Sebastian Schmitt, Maciej Lewenstein, Steve Lenk, Marika Federer, Fred Jendrzejewski, Philipp Hauke, and Valentin Kasper"]},"origin":[{"dateIssuedDisp":"9 June 2023","dateIssuedKey":"2023"}],"id":{"doi":["10.1103/PhysRevA.107.062410"],"eki":["186021522X"]}} | ||
| SRT | |a DELLERYANNQUANTUMAPP9202 | ||