Immune cell type signature discovery and random forest classification for analysis of single cell gene expression datasets

BackgroundRobust immune cell gene expression signatures are central to the analysis of single cell studies. Nearly all known sets of immune cell signatures have been derived by making use of only single gene expression datasets. Utilizing the power of multiple integrated datasets could lead to high-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Aybey, Bogac (VerfasserIn) , Zhao, Sheng (VerfasserIn) , Brors, Benedikt (VerfasserIn) , Staub, Eike (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 04 August 2023
In: Frontiers in immunology
Year: 2023, Jahrgang: 14, Pages: 1-14
ISSN:1664-3224
DOI:10.3389/fimmu.2023.1194745
Online-Zugang:Resolving-System, kostenfrei, Volltext: https://doi.org/10.3389/fimmu.2023.1194745
Verlag, kostenfrei, Volltext: https://www.frontiersin.org/articles/10.3389/fimmu.2023.1194745
Volltext
Verfasserangaben:Bogac Aybey, Sheng Zhao, Benedikt Brors and Eike Staub

MARC

LEADER 00000caa a2200000 c 4500
001 1860249167
003 DE-627
005 20240306102622.0
007 cr uuu---uuuuu
008 230925s2023 xx |||||o 00| ||eng c
024 7 |a 10.3389/fimmu.2023.1194745  |2 doi 
035 |a (DE-627)1860249167 
035 |a (DE-599)KXP1860249167 
035 |a (OCoLC)1425058123 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Aybey, Bogac  |d 1994-  |e VerfasserIn  |0 (DE-588)130387685X  |0 (DE-627)1860248780  |4 aut 
245 1 0 |a Immune cell type signature discovery and random forest classification for analysis of single cell gene expression datasets  |c Bogac Aybey, Sheng Zhao, Benedikt Brors and Eike Staub 
264 1 |c 04 August 2023 
300 |b Illustrationen 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 25.09.2023 
520 |a BackgroundRobust immune cell gene expression signatures are central to the analysis of single cell studies. Nearly all known sets of immune cell signatures have been derived by making use of only single gene expression datasets. Utilizing the power of multiple integrated datasets could lead to high-quality immune cell signatures which could be used as superior inputs to machine learning-based cell type classification approaches.ResultsWe established a novel workflow for the discovery of immune cell type signatures based primarily on gene-versus-gene expression similarity. It leverages multiple datasets, here seven single cell expression datasets from six different cancer types and resulted in eleven immune cell type-specific gene expression signatures. We used these to train random forest classifiers for immune cell type assignment for single-cell RNA-seq datasets. We obtained similar or better prediction results compared to commonly used methods for cell type assignment in independent benchmarking datasets. Our gene signature set yields higher prediction scores than other published immune cell type gene sets in random forest-based cell type classification. We further demonstrate how our approach helps to avoid bias in downstream statistical analyses by re-analysis of a published IFN stimulation experiment.Discussion and conclusionWe demonstrated the quality of our immune cell signatures and their strong performance in a random forest-based cell typing approach. We argue that classifying cells based on our comparably slim sets of genes accompanied by a random forest-based approach not only matches or outperforms widely used published approaches. It also facilitates unbiased downstream statistical analyses of differential gene expression between cell types for significantly more genes compared to previous cell classification algorithms. 
700 1 |a Zhao, Sheng  |e VerfasserIn  |4 aut 
700 1 |a Brors, Benedikt  |e VerfasserIn  |0 (DE-588)1112102965  |0 (DE-627)866068732  |0 (DE-576)476376157  |4 aut 
700 1 |a Staub, Eike  |d 1972-  |e VerfasserIn  |0 (DE-588)129128171  |0 (DE-627)707163250  |0 (DE-576)297508261  |4 aut 
773 0 8 |i Enthalten in  |t Frontiers in immunology  |d Lausanne : Frontiers Media, 2010  |g 14(2023), Artikel-ID 1194745, Seite 1-14  |h Online-Ressource  |w (DE-627)657998354  |w (DE-600)2606827-8  |w (DE-576)343624834  |x 1664-3224  |7 nnas  |a Immune cell type signature discovery and random forest classification for analysis of single cell gene expression datasets 
773 1 8 |g volume:14  |g year:2023  |g elocationid:1194745  |g pages:1-14  |g extent:14  |a Immune cell type signature discovery and random forest classification for analysis of single cell gene expression datasets 
856 4 0 |u https://doi.org/10.3389/fimmu.2023.1194745  |x Resolving-System  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.frontiersin.org/articles/10.3389/fimmu.2023.1194745  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20230925 
993 |a Article 
994 |a 2023 
998 |g 1112102965  |a Brors, Benedikt  |m 1112102965:Brors, Benedikt  |d 140000  |e 140000PB1112102965  |k 0/140000/  |p 3 
998 |g 130387685X  |a Aybey, Bogac  |m 130387685X:Aybey, Bogac  |d 140000  |e 140000PA130387685X  |k 0/140000/  |p 1  |x j 
999 |a KXP-PPN1860249167  |e 4378903970 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"origin":[{"publisherPlace":"Lausanne","dateIssuedKey":"2010","publisher":"Frontiers Media","dateIssuedDisp":"2010-"}],"id":{"issn":["1664-3224"],"eki":["657998354"],"zdb":["2606827-8"]},"part":{"extent":"14","volume":"14","pages":"1-14","year":"2023","text":"14(2023), Artikel-ID 1194745, Seite 1-14"},"disp":"Immune cell type signature discovery and random forest classification for analysis of single cell gene expression datasetsFrontiers in immunology","title":[{"title_sort":"Frontiers in immunology","title":"Frontiers in immunology"}],"pubHistory":["1.2010 -"],"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"657998354","physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 07.11.13"]}],"recId":"1860249167","physDesc":[{"noteIll":"Illustrationen","extent":"14 S."}],"note":["Gesehen am 25.09.2023"],"language":["eng"],"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"04 August 2023"}],"id":{"eki":["1860249167"],"doi":["10.3389/fimmu.2023.1194745"]},"person":[{"given":"Bogac","role":"aut","display":"Aybey, Bogac","family":"Aybey"},{"family":"Zhao","role":"aut","display":"Zhao, Sheng","given":"Sheng"},{"given":"Benedikt","family":"Brors","role":"aut","display":"Brors, Benedikt"},{"given":"Eike","role":"aut","display":"Staub, Eike","family":"Staub"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"name":{"displayForm":["Bogac Aybey, Sheng Zhao, Benedikt Brors and Eike Staub"]},"title":[{"title_sort":"Immune cell type signature discovery and random forest classification for analysis of single cell gene expression datasets","title":"Immune cell type signature discovery and random forest classification for analysis of single cell gene expression datasets"}]} 
SRT |a AYBEYBOGACIMMUNECELL0420