Kinetic field theory: higher-order perturbation theory

We give a detailed exposition of the formalism of kinetic field theory (KFT) with emphasis on the perturbative determination of observables. KFT is a statistical nonequilibrium classical field theory based on the path integral formulation of classical mechanics, employing the powerful techniques dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Heisenberg, Lavinia (VerfasserIn) , Hemmatyar, Shayan (VerfasserIn) , Zentarra, Stefan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 12 September 2022
In: Physical review
Year: 2022, Jahrgang: 106, Heft: 6, Pages: 1-35
ISSN:2470-0029
DOI:10.1103/PhysRevD.106.063513
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1103/PhysRevD.106.063513
Verlag, kostenfrei, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.106.063513
Volltext
Verfasserangaben:Lavinia Heisenberg and Shayan Hemmatyar, Institute for Theoretical Physics, Heidelberg University, Stefan Zentarra, Institute for Theoretical Physics, ETH Zurich
Beschreibung
Zusammenfassung:We give a detailed exposition of the formalism of kinetic field theory (KFT) with emphasis on the perturbative determination of observables. KFT is a statistical nonequilibrium classical field theory based on the path integral formulation of classical mechanics, employing the powerful techniques developed in the context of quantum field theory to describe classical systems. Unlike previous work on KFT, we perform the integration over the probability distribution of initial conditions in the very last step. This significantly improves the clarity of the perturbative treatment and allows for physical interpretation of intermediate results. We give an introduction to the general framework, but focus on the application to interacting N-body systems. Specializing the results to cosmic structure formation, we reproduce the linear growth of the cosmic density fluctuation power spectrum on all scales from microscopic, Newtonian particle dynamics alone.
Beschreibung:Gesehen am 25.09.2023
Beschreibung:Online Resource
ISSN:2470-0029
DOI:10.1103/PhysRevD.106.063513