Wavenumber explicit convergence of a multiscale generalized finite element method for heterogeneous Helmholtz problems

In this paper, the generalized finite element method (GFEM) for solving second order elliptic equations with rough coefficients is studied. New optimal local approximation spaces for GFEMs based on local eigenvalue problems involving a partition of unity are presented. These new spaces have advantag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chupeng, Ma (VerfasserIn) , Alber, Christian (VerfasserIn) , Scheichl, Robert (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: Jun 2023
In: SIAM journal on numerical analysis
Year: 2023, Jahrgang: 61, Heft: 3, Pages: 1546-1584
ISSN:1095-7170
DOI:10.1137/21M1466748
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1137/21M1466748
Verlag, lizenzpflichtig, Volltext: https://epubs.siam.org/doi/10.1137/21M1466748
Volltext
Verfasserangaben:Ma Chupeng, Christian Alber, and Robert Scheichl

MARC

LEADER 00000caa a2200000 c 4500
001 186027823X
003 DE-627
005 20240307053023.0
007 cr uuu---uuuuu
008 230926s2023 xx |||||o 00| ||eng c
024 7 |a 10.1137/21M1466748  |2 doi 
035 |a (DE-627)186027823X 
035 |a (DE-599)KXP186027823X 
035 |a (OCoLC)1425211379 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Chupeng, Ma  |e VerfasserIn  |0 (DE-588)1303988631  |0 (DE-627)186028387X  |4 aut 
245 1 0 |a Wavenumber explicit convergence of a multiscale generalized finite element method for heterogeneous Helmholtz problems  |c Ma Chupeng, Christian Alber, and Robert Scheichl 
264 1 |c Jun 2023 
300 |a 39 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht: 15. Juni 2023 
500 |a Gesehen am 26.09.2023 
520 |a In this paper, the generalized finite element method (GFEM) for solving second order elliptic equations with rough coefficients is studied. New optimal local approximation spaces for GFEMs based on local eigenvalue problems involving a partition of unity are presented. These new spaces have advantages over those proposed in [I. Babuska and R. Lipton, Multiscale Model. Simul., 9 (2011), pp. 373--406]. First, in addition to a nearly exponential decay rate of the local approximation errors with respect to the dimensions of the local spaces, the rate of convergence with respect to the size of the oversampling region is also established. Second, the theoretical results hold for problems with mixed boundary conditions defined on general Lipschitz domains. Finally, an efficient and easy-to-implement technique for generating the discrete $A$-harmonic spaces is proposed which relies on solving an eigenvalue problem associated with the Dirichlet-to-Neumann operator, leading to a substantial reduction in computational cost. Numerical experiments are presented to support the theoretical analysis and to confirm the effectiveness of the new method. 
700 1 |a Alber, Christian  |e VerfasserIn  |0 (DE-588)1303968878  |0 (DE-627)1860278698  |4 aut 
700 1 |a Scheichl, Robert  |d 1972-  |e VerfasserIn  |0 (DE-588)1173753842  |0 (DE-627)1043602305  |0 (DE-576)515668532  |4 aut 
773 0 8 |i Enthalten in  |a Society for Industrial and Applied Mathematics  |t SIAM journal on numerical analysis  |d Philadelphia, Pa. : SIAM, 1966  |g 61(2023), 3 vom: Juni, Seite 1546-1584  |h Online-Ressource  |w (DE-627)266885446  |w (DE-600)1468409-3  |w (DE-576)075961660  |x 1095-7170  |7 nnas 
773 1 8 |g volume:61  |g year:2023  |g number:3  |g month:06  |g pages:1546-1584  |g extent:39  |a Wavenumber explicit convergence of a multiscale generalized finite element method for heterogeneous Helmholtz problems 
856 4 0 |u https://doi.org/10.1137/21M1466748  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://epubs.siam.org/doi/10.1137/21M1466748  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230926 
993 |a Article 
994 |a 2023 
998 |g 1173753842  |a Scheichl, Robert  |m 1173753842:Scheichl, Robert  |d 110000  |d 110400  |e 110000PS1173753842  |e 110400PS1173753842  |k 0/110000/  |k 1/110000/110400/  |p 3  |y j 
998 |g 1303968878  |a Alber, Christian  |m 1303968878:Alber, Christian  |d 110000  |d 110400  |e 110000PA1303968878  |e 110400PA1303968878  |k 0/110000/  |k 1/110000/110400/  |p 2 
999 |a KXP-PPN186027823X  |e 4378993910 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Online veröffentlicht: 15. Juni 2023","Gesehen am 26.09.2023"],"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"Jun 2023"}],"relHost":[{"origin":[{"dateIssuedDisp":"1966-","publisher":"SIAM","publisherPlace":"Philadelphia, Pa.","dateIssuedKey":"1966"}],"note":["Gesehen am 02.07.2021"],"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["Society for Industrial and Applied Mathematics"]},"recId":"266885446","id":{"zdb":["1468409-3"],"issn":["1095-7170"],"eki":["266885446"]},"pubHistory":["3.1966 -"],"corporate":[{"display":"Society for Industrial and Applied Mathematics","role":"aut"}],"part":{"text":"61(2023), 3 vom: Juni, Seite 1546-1584","pages":"1546-1584","issue":"3","volume":"61","year":"2023","extent":"39"},"title":[{"title":"SIAM journal on numerical analysis","title_sort":"SIAM journal on numerical analysis"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Society for Industrial and Applied MathematicsSIAM journal on numerical analysis","language":["eng"],"titleAlt":[{"title":"Journal on numerical analysis"}]}],"person":[{"role":"aut","display":"Chupeng, Ma","family":"Chupeng","given":"Ma"},{"display":"Alber, Christian","role":"aut","given":"Christian","family":"Alber"},{"given":"Robert","family":"Scheichl","display":"Scheichl, Robert","role":"aut"}],"title":[{"title_sort":"Wavenumber explicit convergence of a multiscale generalized finite element method for heterogeneous Helmholtz problems","title":"Wavenumber explicit convergence of a multiscale generalized finite element method for heterogeneous Helmholtz problems"}],"physDesc":[{"extent":"39 S."}],"recId":"186027823X","name":{"displayForm":["Ma Chupeng, Christian Alber, and Robert Scheichl"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"id":{"eki":["186027823X"],"doi":["10.1137/21M1466748"]}} 
SRT |a CHUPENGMAAWAVENUMBER2023