Comparison of synthetic dataset generation methods for medical intervention rooms using medical clothing detection as an example

Purpose: The availability of real data from areas with high privacy requirements, such as the medical intervention space is low and the acquisition complex in terms of data protection. To enable research for assistance systems in the medical intervention room, new methods for data generation for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schülein, Patrick (VerfasserIn) , Teufel, Hannah (VerfasserIn) , Vorpahl, Ronja (VerfasserIn) , Emter, Indira (VerfasserIn) , Bukschat, Yannick (VerfasserIn) , Pfister, Marcus (VerfasserIn) , Rathmann, Nils-Andreas (VerfasserIn) , Diehl, Steffen J. (VerfasserIn) , Vetter, Marcus (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2023
In: EURASIP journal on image and video processing
Year: 2023, Jahrgang: 2023, Pages: 1-21
ISSN:1687-5281
DOI:10.1186/s13640-023-00612-1
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1186/s13640-023-00612-1
Volltext
Verfasserangaben:Patrick Schülein, Hannah Teufel, Ronja Vorpahl, Indira Emter, Yannick Bukschat, Marcus Pfister, Nils Rathmann, Steffen Diehl and Marcus Vetter

MARC

LEADER 00000caa a2200000 c 4500
001 1860417051
003 DE-627
005 20240307052634.0
007 cr uuu---uuuuu
008 230928s2023 xx |||||o 00| ||eng c
024 7 |a 10.1186/s13640-023-00612-1  |2 doi 
035 |a (DE-627)1860417051 
035 |a (DE-599)KXP1860417051 
035 |a (OCoLC)1425211058 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Schülein, Patrick  |e VerfasserIn  |0 (DE-588)1304251179  |0 (DE-627)1860417515  |4 aut 
245 1 0 |a Comparison of synthetic dataset generation methods for medical intervention rooms using medical clothing detection as an example  |c Patrick Schülein, Hannah Teufel, Ronja Vorpahl, Indira Emter, Yannick Bukschat, Marcus Pfister, Nils Rathmann, Steffen Diehl and Marcus Vetter 
264 1 |c 2023 
300 |b Illustrationen 
300 |a 21 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Veröffentlicht: 02. August 2023 
500 |a Gesehen am 28.09.2023 
520 |a Purpose: The availability of real data from areas with high privacy requirements, such as the medical intervention space is low and the acquisition complex in terms of data protection. To enable research for assistance systems in the medical intervention room, new methods for data generation for these areas must be researched. Therefore, this work presents a way to create a synthetic dataset for the medical context, using medical clothing object detection as an example. The goal is to close the reality gap between the synthetic and real data. Methos: Methods of 3D-scanned clothing and designed clothing are compared in a Domain-Randomization and Structured-Domain-Randomization scenario using two different rendering engines. Additionally, a Mixed-Reality dataset in front of a greenscreen and a target domain dataset were used while the latter is used to evaluate the different datasets. The experiments conducted are to show whether scanned clothing or designed clothing produce better results in Domain Randomization and Structured Domain Randomization. Likewise, a baseline will be generated using the mixed reality data. In a further experiment it is investigated whether the combination of real, synthetic and mixed reality image data improves the accuracy compared to real data only. Results: Our experiments show, that Structured-Domain-Randomization of designed clothing together with Mixed-Reality data provide a baseline achieving 72.0% mAP on the test dataset of the clinical target domain. When additionally using 15% (99 images) of available target domain train data, the gap towards 100% (660 images) target domain train data could be nearly closed 80.05% mAP (81.95% mAP). Finally, we show that when additionally using 100% target domain train data the accuracy could be increased to 83.35% mAP. Conclusion: In conclusion, it can be stated that the presented modeling of health professionals is a promising methodology to address the challenge of missing datasets from medical intervention rooms. We will further investigate it on various tasks, like assistance systems, in the medical domain. 
650 4 |a 3D modeling 
650 4 |a 3D scanning 
650 4 |a Camera-based AI-methods 
650 4 |a Deformable objects 
650 4 |a Domain Randomization 
650 4 |a Medical clothing detection 
650 4 |a Mixed Reality 
650 4 |a Structured Domain Randomization 
650 4 |a Synthetic dataset 
700 1 |a Teufel, Hannah  |e VerfasserIn  |4 aut 
700 1 |a Vorpahl, Ronja  |e VerfasserIn  |4 aut 
700 1 |a Emter, Indira  |e VerfasserIn  |4 aut 
700 1 |a Bukschat, Yannick  |e VerfasserIn  |4 aut 
700 1 |a Pfister, Marcus  |e VerfasserIn  |4 aut 
700 1 |a Rathmann, Nils-Andreas  |d 1982-  |e VerfasserIn  |0 (DE-588)140996923  |0 (DE-627)703853538  |0 (DE-576)321542940  |4 aut 
700 1 |a Diehl, Steffen J.  |e VerfasserIn  |0 (DE-588)1020240881  |0 (DE-627)691154120  |0 (DE-576)359785522  |4 aut 
700 1 |a Vetter, Marcus  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |a European Association for Speech, Signal and Image Processing  |t EURASIP journal on image and video processing  |d New York, NY : Hindawi Publishing Corp., 2007  |g 2023(2023), Artikel-ID 12, Seite 1-21  |h Online-Ressource  |w (DE-627)525478434  |w (DE-600)2272982-3  |w (DE-576)325710694  |x 1687-5281  |7 nnas 
773 1 8 |g volume:2023  |g year:2023  |g elocationid:12  |g pages:1-21  |g extent:21  |a Comparison of synthetic dataset generation methods for medical intervention rooms using medical clothing detection as an example 
856 4 0 |u https://doi.org/10.1186/s13640-023-00612-1  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230928 
993 |a Article 
994 |a 2023 
998 |g 1020240881  |a Diehl, Steffen J.  |m 1020240881:Diehl, Steffen J.  |d 60000  |d 60000  |d 62900  |e 60000PD1020240881  |e 60000PD1020240881  |e 62900PD1020240881  |k 0/60000/  |k 0/60000/  |k 1/60000/62900/  |p 8 
998 |g 140996923  |a Rathmann, Nils-Andreas  |m 140996923:Rathmann, Nils-Andreas  |d 60000  |d 60000  |d 62900  |e 60000PR140996923  |e 60000PR140996923  |e 62900PR140996923  |k 0/60000/  |k 0/60000/  |k 1/60000/62900/  |p 7 
999 |a KXP-PPN1860417051  |e 4379663906 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"doi":["10.1186/s13640-023-00612-1"],"eki":["1860417051"]},"name":{"displayForm":["Patrick Schülein, Hannah Teufel, Ronja Vorpahl, Indira Emter, Yannick Bukschat, Marcus Pfister, Nils Rathmann, Steffen Diehl and Marcus Vetter"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"note":["Veröffentlicht: 02. August 2023","Gesehen am 28.09.2023"],"title":[{"title":"Comparison of synthetic dataset generation methods for medical intervention rooms using medical clothing detection as an example","title_sort":"Comparison of synthetic dataset generation methods for medical intervention rooms using medical clothing detection as an example"}],"origin":[{"dateIssuedDisp":"2023","dateIssuedKey":"2023"}],"relHost":[{"corporate":[{"display":"European Association for Speech, Signal and Image Processing","role":"aut"}],"titleAlt":[{"title":"Journal on image and video processing"}],"pubHistory":["Nachgewiesen 2007 - '''"],"name":{"displayForm":["European Association for Speech, Signal and Image Processing"]},"part":{"year":"2023","pages":"1-21","extent":"21","volume":"2023","text":"2023(2023), Artikel-ID 12, Seite 1-21"},"id":{"zdb":["2272982-3"],"eki":["525478434"],"issn":["1687-5281"]},"origin":[{"dateIssuedDisp":"2007-","dateIssuedKey":"2007","publisherPlace":"New York, NY ; Heidelberg ; New York, NY","publisher":"Hindawi Publishing Corp. ; Springer ; Hindawi Publishing Corp."}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title":"EURASIP journal on image and video processing","title_sort":"EURASIP journal on image and video processing"}],"physDesc":[{"extent":"Online-Ressource"}],"recId":"525478434","disp":"European Association for Speech, Signal and Image ProcessingEURASIP journal on image and video processing"}],"person":[{"role":"aut","given":"Patrick","family":"Schülein","display":"Schülein, Patrick"},{"given":"Hannah","role":"aut","family":"Teufel","display":"Teufel, Hannah"},{"role":"aut","given":"Ronja","family":"Vorpahl","display":"Vorpahl, Ronja"},{"display":"Emter, Indira","role":"aut","given":"Indira","family":"Emter"},{"display":"Bukschat, Yannick","family":"Bukschat","role":"aut","given":"Yannick"},{"given":"Marcus","role":"aut","family":"Pfister","display":"Pfister, Marcus"},{"given":"Nils-Andreas","role":"aut","family":"Rathmann","display":"Rathmann, Nils-Andreas"},{"display":"Diehl, Steffen J.","role":"aut","given":"Steffen J.","family":"Diehl"},{"display":"Vetter, Marcus","given":"Marcus","role":"aut","family":"Vetter"}],"physDesc":[{"extent":"21 S.","noteIll":"Illustrationen"}],"recId":"1860417051"} 
SRT |a SCHUELEINPCOMPARISON2023