Filippov’s Theorem for mutational inclusions in a metric space

This article is devoted to an extension of the celebrated Filippov theorem to the metric space setting. We deal with fairly general metric spaces, where derivatives of time-dependent functions are replaced by mutations and solutions of differential equations/inclusions are mutational primitives of (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Frankowska, Halina (VerfasserIn) , Lorenz, Thomas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2023
In: Annali della Scuola Normale Superiore di Pisa, Classe di Scienze
Year: 2023, Jahrgang: 24, Heft: 2, Pages: 1053-1094
ISSN:2036-2145
DOI:10.2422/2036-2145.202106_009
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.2422/2036-2145.202106_009
Verlag, lizenzpflichtig, Volltext: https://journals.sns.it/index.php/annaliscienze/article/view/5764
Volltext
Verfasserangaben:Hélène Frankowska and Thomas Lorenz

MARC

LEADER 00000caa a2200000 c 4500
001 1860466079
003 DE-627
005 20240307052531.0
007 cr uuu---uuuuu
008 230928s2023 xx |||||o 00| ||eng c
024 7 |a 10.2422/2036-2145.202106_009  |2 doi 
035 |a (DE-627)1860466079 
035 |a (DE-599)KXP1860466079 
035 |a (OCoLC)1425211039 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Frankowska, Halina  |e VerfasserIn  |0 (DE-588)133472698  |0 (DE-627)691483418  |0 (DE-576)299871347  |4 aut 
245 1 0 |a Filippov’s Theorem for mutational inclusions in a metric space  |c Hélène Frankowska and Thomas Lorenz 
264 1 |c 2023 
300 |a 42 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Veröffentlicht: 26. Jun 26, 2023 
500 |a Gesehen am 28.09.2023 
520 |a This article is devoted to an extension of the celebrated Filippov theorem to the metric space setting. We deal with fairly general metric spaces, where derivatives of time-dependent functions are replaced by mutations and solutions of differential equations/inclusions are mutational primitives of (time-dependent) maps of transitions. As an example of application we discuss measure-valued solutions to a controlled transport equation and state the Filippov theorem in this context. We also show that whenever a transport equation is generated by Lipschitz vector fields its classical weak solutions coincide with its mutational solutions. Our abstract setting applies as well to systems on the space of nonempty compact subsets of Rn endowed with the Pompeiu-Hausdorff distance and to continuity equations/inclusions on Wasserstein spaces of Borel probability measures. 
700 1 |a Lorenz, Thomas  |d 1974-  |e VerfasserIn  |0 (DE-588)131512617  |0 (DE-627)510159974  |0 (DE-576)298555530  |4 aut 
773 0 8 |i Enthalten in  |a Scuola Normale Superiore. Classe di Scienze  |t Annali della Scuola Normale Superiore di Pisa, Classe di Scienze  |d Pisa : Scuola Normale Superiore, 1871  |g 24(2023), 2, Seite 1053-1094  |h Online-Ressource  |w (DE-627)548127107  |w (DE-600)2393380-X  |w (DE-576)279225717  |x 2036-2145  |7 nnas 
773 1 8 |g volume:24  |g year:2023  |g number:2  |g pages:1053-1094  |g extent:42  |a Filippov’s Theorem for mutational inclusions in a metric space 
856 4 0 |u https://doi.org/10.2422/2036-2145.202106_009  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://journals.sns.it/index.php/annaliscienze/article/view/5764  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230928 
993 |a Article 
994 |a 2023 
998 |g 131512617  |a Lorenz, Thomas  |m 131512617:Lorenz, Thomas  |d 110000  |e 110000PL131512617  |k 0/110000/  |p 2  |y j 
999 |a KXP-PPN1860466079  |e 4379802795 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"role":"aut","display":"Frankowska, Halina","roleDisplay":"VerfasserIn","given":"Halina","family":"Frankowska"},{"display":"Lorenz, Thomas","roleDisplay":"VerfasserIn","role":"aut","family":"Lorenz","given":"Thomas"}],"title":[{"title_sort":"Filippov’s Theorem for mutational inclusions in a metric space","title":"Filippov’s Theorem for mutational inclusions in a metric space"}],"recId":"1860466079","language":["eng"],"note":["Veröffentlicht: 26. Jun 26, 2023","Gesehen am 28.09.2023"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"name":{"displayForm":["Hélène Frankowska and Thomas Lorenz"]},"id":{"doi":["10.2422/2036-2145.202106_009"],"eki":["1860466079"]},"origin":[{"dateIssuedDisp":"2023","dateIssuedKey":"2023"}],"relHost":[{"title":[{"title":"Annali della Scuola Normale Superiore di Pisa, Classe di Scienze","title_sort":"Annali della Scuola Normale Superiore di Pisa, Classe di Scienze"}],"pubHistory":["1.Ser. 1.1871 - 16.1930,5; 2.Ser. 1.1932 - 15.1946(1950); 3.Ser. 1.1947(1949) - 27.1973; 4.Ser. 1.1974 - 30.2001; 5.Ser. 1.2002 -"],"titleAlt":[{"title":"Annali della R. Scuola Normale Superiore di Pisa, Classe di Scienze Fisiche e Matematiche"},{"title":"Annali della R. Scuola Normale Superiore Universitaria di Pisa, Classe di Scienze Fisiche e Matematiche"},{"title":"Scienze fisiche e matematiche"}],"part":{"extent":"42","text":"24(2023), 2, Seite 1053-1094","volume":"24","pages":"1053-1094","issue":"2","year":"2023"},"note":["Gesehen am 27.09.2024"],"disp":"Scuola Normale Superiore. Classe di ScienzeAnnali della Scuola Normale Superiore di Pisa, Classe di Scienze","type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"548127107","corporate":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Scuola Normale Superiore"},{"role":"isb","display":"Scuola Normale Superiore","roleDisplay":"Herausgebendes Organ"}],"language":["ita"],"origin":[{"publisherPlace":"Pisa","dateIssuedDisp":"1871-","dateIssuedKey":"1871","publisher":"Scuola Normale Superiore"}],"id":{"issn":["2036-2145"],"eki":["548127107"],"zdb":["2393380-X"]},"name":{"displayForm":["pubbl. a cura dei professori della Scuola Normale e dell'Università di Pisa"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"42 S."}]} 
SRT |a FRANKOWSKAFILIPPOVST2023