Euclid preparation: XXII. Selection of quiescent galaxies from mock photometry using machine learning

The Euclid Space Telescope will provide deep imaging at optical and near-infrared wavelengths, along with slitless near-infrared spectroscopy, across ~15 000deg2 of the sky. Euclid is expected to detect ~12 billion astronomical sources, facilitating new insights into cosmology, galaxy evolution, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Humphrey, Andrew (VerfasserIn) , Jahnke, Knud (VerfasserIn) , Seidel, Gregor (VerfasserIn) , Maturi, Matteo (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 14 March 2023
In: Astronomy and astrophysics
Year: 2023, Jahrgang: 671, Pages: 1-36
ISSN:1432-0746
DOI:10.1051/0004-6361/202244307
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1051/0004-6361/202244307
Verlag, kostenfrei, Volltext: https://www.aanda.org/articles/aa/abs/2023/03/aa44307-22/aa44307-22.html
Volltext
Verfasserangaben:Euclid collaboration: A. Humphrey, K. Jahnke, G. Seidel, M. Maturi [und viele weitere]

MARC

LEADER 00000caa a2200000 c 4500
001 1860921442
003 DE-627
005 20250519081858.0
007 cr uuu---uuuuu
008 231009s2023 xx |||||o 00| ||eng c
024 7 |a 10.1051/0004-6361/202244307  |2 doi 
035 |a (DE-627)1860921442 
035 |a (DE-599)KXP1860921442 
035 |a (OCoLC)1425210833 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Humphrey, Andrew  |e VerfasserIn  |0 (DE-588)130538735X  |0 (DE-627)1860924379  |4 aut 
245 1 0 |a Euclid preparation  |b XXII. Selection of quiescent galaxies from mock photometry using machine learning  |c Euclid collaboration: A. Humphrey, K. Jahnke, G. Seidel, M. Maturi [und viele weitere] 
264 1 |c 14 March 2023 
300 |b Illustrationen 
300 |a 36 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 09.10.2023 
520 |a The Euclid Space Telescope will provide deep imaging at optical and near-infrared wavelengths, along with slitless near-infrared spectroscopy, across ~15 000deg2 of the sky. Euclid is expected to detect ~12 billion astronomical sources, facilitating new insights into cosmology, galaxy evolution, and various other topics. In order to optimally exploit the expected very large dataset, appropriate methods and software tools need to be developed. Here we present a novel machine-learning-based methodology for the selection of quiescent galaxies using broadband Euclid IE, YE, JE, and HE photometry, in combination with multi-wavelength photometry from other large surveys (e.g. the Rubin LSST). The ARIADNE pipeline uses meta-learning to fuse decision-tree ensembles, nearest-neighbours, and deep-learning methods into a single classifier that yields significantly higher accuracy than any of the individual learning methods separately. The pipeline has been designed to have 'sparsity awareness', such that missing photometry values are informative for the classification. In addition, our pipeline is able to derive photometric redshifts for galaxies selected as quiescent, aided by the 'pseudo-labelling' semi-supervised method, and using an outlier detection algorithm to identify and reject likely catastrophic outliers. After the application of the outlier filter, our pipeline achieves a normalised mean absolute deviation of ≲0.03 and a fraction of catastrophic outliers of ≲0.02 when measured against the COSMOS2015 photometric redshifts. We apply our classification pipeline to mock galaxy photometry catalogues corresponding to three main scenarios: (i) Euclid Deep Survey photometry with ancillary ugriz, WISE, and radio data; (ii) Euclid Wide Survey photometry with ancillary ugriz, WISE, and radio data; and (iii) Euclid Wide Survey photometry only, with no foreknowledge of galaxy redshifts. In a like-for-like comparison, our classification pipeline outperforms UVJ selection, in addition to the Euclid IE -YE, JE - HE and u - IE, IE - JE colour-colour methods, with improvements in completeness and the F1-score (the harmonic mean of precision and recall) of up to a factor of 2. 
700 1 |a Jahnke, Knud  |e VerfasserIn  |0 (DE-588)1200875141  |0 (DE-627)1683870255  |4 aut 
700 1 |a Seidel, Gregor  |d 1977-  |e VerfasserIn  |0 (DE-588)139967559  |0 (DE-627)703521993  |0 (DE-576)314004769  |4 aut 
700 1 |a Maturi, Matteo  |e VerfasserIn  |0 (DE-588)110256138X  |0 (DE-627)860405699  |0 (DE-576)425587452  |4 aut 
773 0 8 |i Enthalten in  |t Astronomy and astrophysics  |d Les Ulis : EDP Sciences, 1969  |g 671(2023) vom: März, Artikel-ID A99, Seite 1-36  |h Online-Ressource  |w (DE-627)253390222  |w (DE-600)1458466-9  |w (DE-576)072283351  |x 1432-0746  |7 nnas  |a Euclid preparation XXII. Selection of quiescent galaxies from mock photometry using machine learning 
773 1 8 |g volume:671  |g year:2023  |g month:03  |g elocationid:A99  |g pages:1-36  |g extent:36  |a Euclid preparation XXII. Selection of quiescent galaxies from mock photometry using machine learning 
856 4 0 |u https://doi.org/10.1051/0004-6361/202244307  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.aanda.org/articles/aa/abs/2023/03/aa44307-22/aa44307-22.html  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20231009 
993 |a Article 
994 |a 2023 
998 |g 110256138X  |a Maturi, Matteo  |m 110256138X:Maturi, Matteo  |d 700000  |d 714000  |d 714200  |d 130000  |e 700000PM110256138X  |e 714000PM110256138X  |e 714200PM110256138X  |e 130000PM110256138X  |k 0/700000/  |k 1/700000/714000/  |k 2/700000/714000/714200/  |k 0/130000/  |p 186 
998 |g 139967559  |a Seidel, Gregor  |m 139967559:Seidel, Gregor  |d 130000  |e 130000PS139967559  |k 0/130000/  |p 113 
998 |g 1200875141  |a Jahnke, Knud  |m 1200875141:Jahnke, Knud  |d 130000  |e 130000PJ1200875141  |k 0/130000/  |p 60 
999 |a KXP-PPN1860921442  |e 4382661641 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title":"Euclid preparation","subtitle":"XXII. Selection of quiescent galaxies from mock photometry using machine learning","title_sort":"Euclid preparation"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"eki":["1860921442"],"doi":["10.1051/0004-6361/202244307"]},"physDesc":[{"noteIll":"Illustrationen","extent":"36 S."}],"relHost":[{"origin":[{"publisherPlace":"Les Ulis ; Berlin ; Heidelberg","dateIssuedKey":"1969","dateIssuedDisp":"1969-","publisher":"EDP Sciences ; Springer"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["1458466-9"],"eki":["253390222"],"issn":["1432-0746"]},"title":[{"title_sort":"Astronomy and astrophysics","title":"Astronomy and astrophysics","subtitle":"an international weekly journal"}],"recId":"253390222","name":{"displayForm":["European Southern Observatory (ESO)"]},"titleAlt":[{"title":"Astronomy & astrophysics"},{"title":"a European journal"}],"corporate":[{"display":"European Southern Observatory","role":"isb"}],"disp":"Euclid preparation XXII. Selection of quiescent galaxies from mock photometry using machine learningAstronomy and astrophysics","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 21.06.2024","Erscheint 36mal jährlich in 12 Bänden zu je 3 Ausgaben","Fortsetzung der Druck-Ausgabe"],"pubHistory":["1.1969 -"],"part":{"volume":"671","year":"2023","text":"671(2023) vom: März, Artikel-ID A99, Seite 1-36","pages":"1-36","extent":"36"},"language":["eng"]}],"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"14 March 2023"}],"name":{"displayForm":["Euclid collaboration: A. Humphrey, K. Jahnke, G. Seidel, M. Maturi [und viele weitere]"]},"language":["eng"],"recId":"1860921442","person":[{"role":"aut","family":"Humphrey","display":"Humphrey, Andrew","given":"Andrew"},{"family":"Jahnke","role":"aut","given":"Knud","display":"Jahnke, Knud"},{"role":"aut","family":"Seidel","given":"Gregor","display":"Seidel, Gregor"},{"display":"Maturi, Matteo","given":"Matteo","role":"aut","family":"Maturi"}],"note":["Gesehen am 09.10.2023"]} 
SRT |a HUMPHREYANEUCLIDPREP1420