The free energy principle made simpler but not too simple

This paper provides a concise description of the free energy principle, starting from a formulation of random dynamical systems in terms of a Langevin equation and ending with a Bayesian mechanics that can be read as a physics of sentience. It rehearses the key steps using standard results from stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Friston, Karl J. (VerfasserIn) , Da Costa, Lancelot (VerfasserIn) , Sajid, Noor (VerfasserIn) , Heins, Conor (VerfasserIn) , Ueltzhöffer, Kai (VerfasserIn) , Pavliotis, Grigorios A. (VerfasserIn) , Parr, Thomas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 28 July 2023
In: Physics reports
Year: 2023, Jahrgang: 1024, Pages: 1-29
ISSN:0370-1573
DOI:10.1016/j.physrep.2023.07.001
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.physrep.2023.07.001
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S037015732300203X
Volltext
Verfasserangaben:Karl Friston, Lancelot Da Costa, Noor Sajid, Conor Heins, Kai Ueltzhöffer, Grigorios A. Pavliotis, Thomas Parr
Beschreibung
Zusammenfassung:This paper provides a concise description of the free energy principle, starting from a formulation of random dynamical systems in terms of a Langevin equation and ending with a Bayesian mechanics that can be read as a physics of sentience. It rehearses the key steps using standard results from statistical physics. These steps entail (i) establishing a particular partition of states based upon conditional independencies that inherit from sparsely coupled dynamics, (ii) unpacking the implications of this partition in terms of Bayesian inference and (iii) describing the paths of particular states with a variational principle of least action. Teleologically, the free energy principle offers a normative account of self-organisation in terms of optimal Bayesian design and decision-making, in the sense of maximising marginal likelihood or Bayesian model evidence. In summary, starting from a description of the world in terms of random dynamical systems, we end up with a description of self-organisation as sentient behaviour that can be interpreted as self-evidencing; namely, self-assembly, autopoiesis or active inference.
Beschreibung:Gesehen am 09.10.2023
Beschreibung:Online Resource
ISSN:0370-1573
DOI:10.1016/j.physrep.2023.07.001