Novel deep-learning-based diffusion weighted imaging sequence in 1.5 T breast MRI

PURPOSE: This study aimed to assess the technical feasibility, the impact on image quality, and the acquisition time (TA) of a new deep-learning-based reconstruction algorithm in diffusion weighted imaging (DWI) of breast magnetic resonance imaging (MRI). METHODS: Retrospective analysis of 55 female...

Full description

Saved in:
Bibliographic Details
Main Authors: Wessling, Daniel (Author) , Gassenmaier, Sebastian (Author) , Olthof, Susann-Cathrin (Author) , Benkert, Thomas (Author) , Weiland, Elisabeth (Author) , Afat, Saif (Author) , Preibsch, Heike (Author)
Format: Article (Journal)
Language:English
Published: September 2023
In: European journal of radiology
Year: 2023, Volume: 166, Pages: 1-9
ISSN:1872-7727
DOI:10.1016/j.ejrad.2023.110948
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.ejrad.2023.110948
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0720048X23002620
Get full text
Author Notes:Daniel Wessling, Sebastian Gassenmaier, Susann-Cathrin Olthof, Thomas Benkert, Elisabeth Weiland, Saif Afat, Heike Preibsch

MARC

LEADER 00000caa a2200000 c 4500
001 1867603675
003 DE-627
005 20240329080853.0
007 cr uuu---uuuuu
008 231025s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ejrad.2023.110948  |2 doi 
035 |a (DE-627)1867603675 
035 |a (DE-599)KXP1867603675 
035 |a (OCoLC)1425210109 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Wessling, Daniel  |e VerfasserIn  |0 (DE-588)1307202861  |0 (DE-627)186760521X  |4 aut 
245 1 0 |a Novel deep-learning-based diffusion weighted imaging sequence in 1.5 T breast MRI  |c Daniel Wessling, Sebastian Gassenmaier, Susann-Cathrin Olthof, Thomas Benkert, Elisabeth Weiland, Saif Afat, Heike Preibsch 
264 1 |c September 2023 
300 |b Illustrationen 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 25. Juni 2023 
500 |a Gesehen am 25.10.1023 
520 |a PURPOSE: This study aimed to assess the technical feasibility, the impact on image quality, and the acquisition time (TA) of a new deep-learning-based reconstruction algorithm in diffusion weighted imaging (DWI) of breast magnetic resonance imaging (MRI). METHODS: Retrospective analysis of 55 female patients who underwent breast DWI at 1.5 T. Raw data were reconstructed using a deep-learning (DL) reconstruction algorithm on a subset of the acquired averages, therefore a reduction of TA. Clinically used standard DWI sequence (DWIStd) and the DL-reconstructed images (DWIDL) were compared. Two radiologists rated the image quality of b800 and ADC images, using a Likert-scale from 1 to 5 with 5 being considered perfect image quality. Signal intensities were measured by placing a region of interest (ROI) at the same position in both sequences. RESULTS: TA was reduced by 40 % in DWIDL, compared to DWIStd, DWIDL improved noise and sharpness while maintaining contrast, the level of artifacts, and diagnostic confidence. There were no differences regarding the signal intensity values of the apparent diffusion coefficient (ADC), (p = 0.955), b50-values (p = 0.070) and b800-values (p = 0.415) comparing standard and DL-imaging. Lesion assessment showed no differences regarding the number of lesions in ADC and DWI (both p = 1.000) and regarding the lesion diameter in DWI (p = 0.961;0.972) and ADC (p = 0.961;0.972). CONCLUSIONS: The novel deep-learning-based reconstruction algorithm significantly reduces TA in breast DWI, while improving sharpness, reducing noise, and maintaining a comparable level of image quality, artifacts, contrast, and diagnostic confidence. DWIDL does not influence the quantifiable parameters. 
650 4 |a artificial intelligence 
650 4 |a breast cancer 
650 4 |a deep learning 
650 4 |a diffusion magnetic resonance imaging 
650 4 |a female 
650 4 |a humans 
650 4 |a magnetic resonance imaging 
650 4 |a MRI 
650 4 |a reproducibility of results 
650 4 |a retrospective studies 
650 4 |a sexually transmitted diseases 
700 1 |a Gassenmaier, Sebastian  |e VerfasserIn  |4 aut 
700 1 |a Olthof, Susann-Cathrin  |e VerfasserIn  |4 aut 
700 1 |a Benkert, Thomas  |e VerfasserIn  |4 aut 
700 1 |a Weiland, Elisabeth  |e VerfasserIn  |4 aut 
700 1 |a Afat, Saif  |e VerfasserIn  |4 aut 
700 1 |a Preibsch, Heike  |d 1985-  |e VerfasserIn  |0 (DE-588)1070036021  |0 (DE-627)82320006X  |0 (DE-576)429709803  |4 aut 
773 0 8 |i Enthalten in  |t European journal of radiology  |d Amsterdam [u.a.] : Elsevier Science, 1990  |g 166(2023) vom: Sept., Artikel-ID 110948, Seite 1-9  |h Online-Ressource  |w (DE-627)32044483X  |w (DE-600)2005350-2  |w (DE-576)099718138  |x 1872-7727  |7 nnas  |a Novel deep-learning-based diffusion weighted imaging sequence in 1.5 T breast MRI 
773 1 8 |g volume:166  |g year:2023  |g month:09  |g elocationid:110948  |g pages:1-9  |g extent:9  |a Novel deep-learning-based diffusion weighted imaging sequence in 1.5 T breast MRI 
856 4 0 |u https://doi.org/10.1016/j.ejrad.2023.110948  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0720048X23002620  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20231025 
993 |a Article 
994 |a 2023 
998 |g 1307202861  |a Wessling, Daniel  |m 1307202861:Wessling, Daniel  |d 910000  |d 911100  |e 910000PW1307202861  |e 911100PW1307202861  |k 0/910000/  |k 1/910000/911100/  |p 1  |x j 
999 |a KXP-PPN1867603675  |e 4396430914 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"pubHistory":["Nachgewiesen 10.1990 -"],"titleAlt":[{"title":"EJR"}],"part":{"extent":"9","volume":"166","text":"166(2023) vom: Sept., Artikel-ID 110948, Seite 1-9","pages":"1-9","year":"2023"},"disp":"Novel deep-learning-based diffusion weighted imaging sequence in 1.5 T breast MRIEuropean journal of radiology","note":["Gesehen am 05.02.20"],"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"32044483X","language":["eng"],"title":[{"title_sort":"European journal of radiology","title":"European journal of radiology","subtitle":"EJR"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Amsterdam [u.a.]","dateIssuedKey":"1990","publisher":"Elsevier Science","dateIssuedDisp":"1990-"}],"id":{"issn":["1872-7727"],"zdb":["2005350-2"],"eki":["32044483X"]}}],"physDesc":[{"noteIll":"Illustrationen","extent":"9 S."}],"id":{"doi":["10.1016/j.ejrad.2023.110948"],"eki":["1867603675"]},"origin":[{"dateIssuedDisp":"September 2023","dateIssuedKey":"2023"}],"name":{"displayForm":["Daniel Wessling, Sebastian Gassenmaier, Susann-Cathrin Olthof, Thomas Benkert, Elisabeth Weiland, Saif Afat, Heike Preibsch"]},"language":["eng"],"recId":"1867603675","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Online verfügbar: 25. Juni 2023","Gesehen am 25.10.1023"],"title":[{"title":"Novel deep-learning-based diffusion weighted imaging sequence in 1.5 T breast MRI","title_sort":"Novel deep-learning-based diffusion weighted imaging sequence in 1.5 T breast MRI"}],"person":[{"display":"Wessling, Daniel","roleDisplay":"VerfasserIn","role":"aut","family":"Wessling","given":"Daniel"},{"roleDisplay":"VerfasserIn","display":"Gassenmaier, Sebastian","role":"aut","family":"Gassenmaier","given":"Sebastian"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Olthof, Susann-Cathrin","given":"Susann-Cathrin","family":"Olthof"},{"role":"aut","display":"Benkert, Thomas","roleDisplay":"VerfasserIn","given":"Thomas","family":"Benkert"},{"role":"aut","display":"Weiland, Elisabeth","roleDisplay":"VerfasserIn","given":"Elisabeth","family":"Weiland"},{"roleDisplay":"VerfasserIn","display":"Afat, Saif","role":"aut","family":"Afat","given":"Saif"},{"role":"aut","display":"Preibsch, Heike","roleDisplay":"VerfasserIn","given":"Heike","family":"Preibsch"}]} 
SRT |a WESSLINGDANOVELDEEPL2023