Impact of signal intensity normalization of MRI on the generalizability of radiomic-based prediction of molecular glioma subtypes

Objectives: Radiomic features have demonstrated encouraging results for non-invasive detection of molecular biomarkers, but the lack of guidelines for pre-processing MRI-data has led to poor generalizability. Here, we assessed the influence of different MRI-intensity normalization techniques on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Foltyn-Dumitru, Martha (VerfasserIn) , Schell, Marianne (VerfasserIn) , Rastogi, Aditya (VerfasserIn) , Sahm, Felix (VerfasserIn) , Keßler, Tobias (VerfasserIn) , Wick, Wolfgang (VerfasserIn) , Bendszus, Martin (VerfasserIn) , Brugnara, Gianluca (VerfasserIn) , Vollmuth, Philipp (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2023
In: European radiology
Year: 2024, Jahrgang: 34, Heft: 4, Pages: 2782-2790
ISSN:1432-1084
DOI:10.1007/s00330-023-10034-2
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00330-023-10034-2
Volltext
Verfasserangaben:Martha Foltyn-Dumitru, Marianne Schell, Aditya Rastogi, Felix Sahm, Tobias Kessler, Wolfgang Wick, Martin Bendszus, Gianluca Brugnara, Philipp Vollmuth

MARC

LEADER 00000caa a22000002c 4500
001 1868567567
003 DE-627
005 20240626133036.0
007 cr uuu---uuuuu
008 231027s2023 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00330-023-10034-2  |2 doi 
035 |a (DE-627)1868567567 
035 |a (DE-599)KXP1868567567 
035 |a (OCoLC)1425210025 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Foltyn-Dumitru, Martha  |e VerfasserIn  |0 (DE-588)1197171517  |0 (DE-627)1678980730  |4 aut 
245 1 0 |a Impact of signal intensity normalization of MRI on the generalizability of radiomic-based prediction of molecular glioma subtypes  |c Martha Foltyn-Dumitru, Marianne Schell, Aditya Rastogi, Felix Sahm, Tobias Kessler, Wolfgang Wick, Martin Bendszus, Gianluca Brugnara, Philipp Vollmuth 
264 1 |c 2023 
300 |b Illustrationen 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Vorab online veröffentlicht: 06. September 2023 
500 |a Gesehen am 27.10.2023 
520 |a Objectives: Radiomic features have demonstrated encouraging results for non-invasive detection of molecular biomarkers, but the lack of guidelines for pre-processing MRI-data has led to poor generalizability. Here, we assessed the influence of different MRI-intensity normalization techniques on the performance of radiomics-based models for predicting molecular glioma subtypes. Methods: Preoperative MRI-data from n = 615 patients with newly diagnosed glioma and known isocitrate dehydrogenase (IDH) and 1p/19q status were pre-processed using four different methods: no normalization (naive), N4 bias field correction (N4), N4 followed by either WhiteStripe (N4/WS), or z-score normalization (N4/z-score). A total of 377 Image-Biomarker-Standardisation-Initiative-compliant radiomic features were extracted from each normalized data, and 9 different machine-learning algorithms were trained for multiclass prediction of molecular glioma subtypes (IDH-mutant 1p/19q codeleted vs. IDH-mutant 1p/19q non-codeleted vs. IDH wild type). External testing was performed in public glioma datasets from UCSF (n = 410) and TCGA (n = 160). Results: Support vector machine yielded the best performance with macro-average AUCs of 0.84 (naive), 0.84 (N4), 0.87 (N4/WS), and 0.87 (N4/z-score) in the internal test set. Both N4/WS and z-score outperformed the other approaches in the external UCSF and TCGA test sets with macro-average AUCs ranging from 0.85 to 0.87, replicating the performance of the internal test set, in contrast to macro-average AUCs ranging from 0.19 to 0.45 for naive and 0.26 to 0.52 for N4 alone. Conclusion: Intensity normalization of MRI data is essential for the generalizability of radiomic-based machine-learning models. Specifically, both N4/WS and N4/z-score approaches allow to preserve the high model performance, yielding generalizable performance when applying the developed radiomic-based machine-learning model in an external heterogeneous, multi-institutional setting. Clinical relevance statement: Intensity normalization such as N4/WS or N4/z-score can be used to develop reliable radiomics-based machine learning models from heterogeneous multicentre MRI datasets and provide non-invasive prediction of glioma subtypes. 
650 4 |a Genotype 
650 4 |a Glioma 
650 4 |a Isocitrate dehydrogenase 
650 4 |a Magnetic resonance imaging 
700 1 |a Schell, Marianne  |d 1986-  |e VerfasserIn  |0 (DE-588)1197163433  |0 (DE-627)167897076X  |4 aut 
700 1 |a Rastogi, Aditya  |e VerfasserIn  |0 (DE-588)1303198118  |0 (DE-627)1860132634  |4 aut 
700 1 |a Sahm, Felix  |d 1984-  |e VerfasserIn  |0 (DE-588)1022852132  |0 (DE-627)717318478  |0 (DE-576)366075020  |4 aut 
700 1 |a Keßler, Tobias  |d 1987-  |e VerfasserIn  |0 (DE-588)1104151693  |0 (DE-627)86164591X  |0 (DE-576)470840277  |4 aut 
700 1 |a Wick, Wolfgang  |d 1970-  |e VerfasserIn  |0 (DE-588)120297736  |0 (DE-627)080586929  |0 (DE-576)186221320  |4 aut 
700 1 |a Bendszus, Martin  |e VerfasserIn  |0 (DE-588)1032676426  |0 (DE-627)738634131  |0 (DE-576)175567697  |4 aut 
700 1 |a Brugnara, Gianluca  |e VerfasserIn  |0 (DE-588)1197163123  |0 (DE-627)1678969850  |4 aut 
700 1 |a Vollmuth, Philipp  |d 1987-  |e VerfasserIn  |0 (DE-588)1043270086  |0 (DE-627)771319177  |0 (DE-576)394600738  |4 aut 
773 0 8 |i Enthalten in  |t European radiology  |d Berlin : Springer, 1991  |g 34(2024), 4, Seite 2782-2790  |h Online-Ressource  |w (DE-627)268757526  |w (DE-600)1472718-3  |w (DE-576)103868070  |x 1432-1084  |7 nnas  |a Impact of signal intensity normalization of MRI on the generalizability of radiomic-based prediction of molecular glioma subtypes 
773 1 8 |g volume:34  |g year:2024  |g number:4  |g pages:2782-2790  |g extent:9  |a Impact of signal intensity normalization of MRI on the generalizability of radiomic-based prediction of molecular glioma subtypes 
856 4 0 |u https://doi.org/10.1007/s00330-023-10034-2  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20231027 
993 |a Article 
994 |a 2023 
998 |g 1043270086  |a Vollmuth, Philipp  |m 1043270086:Vollmuth, Philipp  |d 910000  |d 911100  |d 50000  |e 910000PV1043270086  |e 911100PV1043270086  |e 50000PV1043270086  |k 0/910000/  |k 1/910000/911100/  |k 0/50000/  |p 9  |y j 
998 |g 1197163123  |a Brugnara, Gianluca  |m 1197163123:Brugnara, Gianluca  |d 910000  |d 911100  |e 910000PB1197163123  |e 911100PB1197163123  |k 0/910000/  |k 1/910000/911100/  |p 8 
998 |g 1032676426  |a Bendszus, Martin  |m 1032676426:Bendszus, Martin  |d 910000  |d 911100  |e 910000PB1032676426  |e 911100PB1032676426  |k 0/910000/  |k 1/910000/911100/  |p 7 
998 |g 120297736  |a Wick, Wolfgang  |m 120297736:Wick, Wolfgang  |d 910000  |d 911100  |e 910000PW120297736  |e 911100PW120297736  |k 0/910000/  |k 1/910000/911100/  |p 6 
998 |g 1104151693  |a Keßler, Tobias  |m 1104151693:Keßler, Tobias  |d 910000  |d 911100  |e 910000PK1104151693  |e 911100PK1104151693  |k 0/910000/  |k 1/910000/911100/  |p 5 
998 |g 1022852132  |a Sahm, Felix  |m 1022852132:Sahm, Felix  |d 910000  |d 912000  |d 50000  |e 910000PS1022852132  |e 912000PS1022852132  |e 50000PS1022852132  |k 0/910000/  |k 1/910000/912000/  |k 0/50000/  |p 4 
998 |g 1303198118  |a Rastogi, Aditya  |m 1303198118:Rastogi, Aditya  |d 910000  |d 911100  |e 910000PR1303198118  |e 911100PR1303198118  |k 0/910000/  |k 1/910000/911100/  |p 3 
998 |g 1197163433  |a Schell, Marianne  |m 1197163433:Schell, Marianne  |d 910000  |d 911100  |e 910000PS1197163433  |e 911100PS1197163433  |k 0/910000/  |k 1/910000/911100/  |p 2 
998 |g 1197171517  |a Foltyn-Dumitru, Martha  |m 1197171517:Foltyn-Dumitru, Martha  |d 910000  |d 911100  |e 910000PF1197171517  |e 911100PF1197171517  |k 0/910000/  |k 1/910000/911100/  |p 1  |x j 
999 |a KXP-PPN1868567567  |e 439916557X 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"title":[{"subtitle":"official organ of the European Association of Radiology","title":"European radiology","title_sort":"European radiology"}],"disp":"Impact of signal intensity normalization of MRI on the generalizability of radiomic-based prediction of molecular glioma subtypesEuropean radiology","origin":[{"publisher":"Springer","publisherPlace":"Berlin ; Heidelberg","dateIssuedKey":"1991","dateIssuedDisp":"1991-"}],"part":{"extent":"9","volume":"34","issue":"4","pages":"2782-2790","year":"2024","text":"34(2024), 4, Seite 2782-2790"},"id":{"issn":["1432-1084","1613-3757"],"eki":["268757526"],"zdb":["1472718-3"]},"language":["eng"],"pubHistory":["1.1991 -"],"type":{"media":"Online-Ressource","bibl":"periodical"},"titleAlt":[{"title":"European radiology / Supplement"},{"title":"European radiology supplements"}],"note":["Gesehen am 06.02.2018","Ungezählte Beil.: Supplement"],"corporate":[{"display":"European Association of Radiology","role":"isb"}],"recId":"268757526","physDesc":[{"extent":"Online-Ressource"}]}],"recId":"1868567567","physDesc":[{"noteIll":"Illustrationen","extent":"9 S."}],"language":["eng"],"note":["Vorab online veröffentlicht: 06. September 2023","Gesehen am 27.10.2023"],"person":[{"given":"Martha","family":"Foltyn-Dumitru","display":"Foltyn-Dumitru, Martha","role":"aut"},{"family":"Schell","role":"aut","display":"Schell, Marianne","given":"Marianne"},{"given":"Aditya","family":"Rastogi","display":"Rastogi, Aditya","role":"aut"},{"family":"Sahm","display":"Sahm, Felix","role":"aut","given":"Felix"},{"given":"Tobias","role":"aut","display":"Keßler, Tobias","family":"Keßler"},{"display":"Wick, Wolfgang","role":"aut","family":"Wick","given":"Wolfgang"},{"family":"Bendszus","role":"aut","display":"Bendszus, Martin","given":"Martin"},{"given":"Gianluca","family":"Brugnara","display":"Brugnara, Gianluca","role":"aut"},{"family":"Vollmuth","role":"aut","display":"Vollmuth, Philipp","given":"Philipp"}],"id":{"doi":["10.1007/s00330-023-10034-2"],"eki":["1868567567"]},"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"2023"}],"name":{"displayForm":["Martha Foltyn-Dumitru, Marianne Schell, Aditya Rastogi, Felix Sahm, Tobias Kessler, Wolfgang Wick, Martin Bendszus, Gianluca Brugnara, Philipp Vollmuth"]},"title":[{"title":"Impact of signal intensity normalization of MRI on the generalizability of radiomic-based prediction of molecular glioma subtypes","title_sort":"Impact of signal intensity normalization of MRI on the generalizability of radiomic-based prediction of molecular glioma subtypes"}],"type":{"bibl":"article-journal","media":"Online-Ressource"}} 
SRT |a FOLTYNDUMIIMPACTOFSI2023