Classification of sleep stages using multi-wavelet time frequency entropy and LDA

<p> <b>Background:</b> The process of automatic sleep stage scoring consists of two major parts: feature extraction and classification. Features are normally extracted from the polysomno-graphic recordings, mainly electroencephalograph (EEG) signals. The EEG is considered a non-sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fraiwan, Luay (VerfasserIn) , Lweesy, Khaldon (VerfasserIn) , Khasawneh, N. (VerfasserIn) , Fraiwan, M. (VerfasserIn) , Wenz, Heinrich (VerfasserIn) , Dickhaus, Hartmut (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: January 20, 2010
In: Methods of information in medicine
Year: 2010, Jahrgang: 49, Heft: 3, Pages: 230-237
ISSN:2511-705X
DOI:10.3414/ME09-01-0054
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3414/ME09-01-0054
Verlag, lizenzpflichtig, Volltext: http://www.thieme-connect.de/DOI/DOI?10.3414/ME09-01-0054
Volltext
Verfasserangaben:L. Fraiwan, K. Lweesy, N. Khasawneh, M. Fraiwan, H. Wenz, H. Dickhaus

MARC

LEADER 00000caa a2200000 c 4500
001 1869503120
003 DE-627
005 20240311121750.0
007 cr uuu---uuuuu
008 231107s2010 xx |||||o 00| ||eng c
024 7 |a 10.3414/ME09-01-0054  |2 doi 
035 |a (DE-627)1869503120 
035 |a (DE-599)KXP1869503120 
035 |a (OCoLC)1425872962 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Fraiwan, Luay  |e VerfasserIn  |0 (DE-588)1156485800  |0 (DE-627)1019298499  |0 (DE-576)502208759  |4 aut 
245 1 0 |a Classification of sleep stages using multi-wavelet time frequency entropy and LDA  |c L. Fraiwan, K. Lweesy, N. Khasawneh, M. Fraiwan, H. Wenz, H. Dickhaus 
264 1 |c January 20, 2010 
300 |a 8 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 07.11.2023 
520 |a <p> <b>Background:</b> The process of automatic sleep stage scoring consists of two major parts: feature extraction and classification. Features are normally extracted from the polysomno-graphic recordings, mainly electroencephalograph (EEG) signals. The EEG is considered a non-stationary signal which increases the complexity of the detection of different waves in it.</p> <p> <b>Objectives:</b> This work presents a new technique for automatic sleep stage scoring based on employing continuous wavelet transform (CWT) and linear discriminant analysis (LDA) using different mother wavelets to detect different waves embedded in the EEG signal.</p> <p> <b>Methods:</b> The use of different mother wave-lets increases the ability to detect waves in the EEG signal. The extracted features were formed based on CWT time frequency entropy using three mother wavelets, and the classification was performed using the linear discriminant analysis. Thirty-two data sets from the MIT-BIH database were used to evaluate the performance of the proposed method.</p> <p> <b>Results:</b> Features of a single EEG signal were extracted successfully based on the time frequency entropy using the continuous wavelet transform with three mother wavelets. The proposed method has shown to outperform the classification based on a CWT using a single mother wavelet. The accuracy was found to be 0.84, while the kappa coefficient was 0.78.</p> <p> <b>Conclusions:</b> This work has shown that wavelet time frequency entropy provides a powerful tool for feature extraction for the non-stationary EEG signal; the accuracy of the classification procedure improved when using multiple wavelets compared to the use of single wavelet time frequency entropy. </p> 
700 1 |a Lweesy, Khaldon  |e VerfasserIn  |0 (DE-588)1273394542  |0 (DE-627)182319026X  |4 aut 
700 1 |a Khasawneh, N.  |e VerfasserIn  |4 aut 
700 1 |a Fraiwan, M.  |e VerfasserIn  |4 aut 
700 1 |a Wenz, Heinrich  |e VerfasserIn  |0 (DE-588)1105692884  |0 (DE-627)862763142  |0 (DE-576)473708922  |4 aut 
700 1 |a Dickhaus, Hartmut  |e VerfasserIn  |0 (DE-588)172054710  |0 (DE-627)696958074  |0 (DE-576)132929090  |4 aut 
773 0 8 |i Enthalten in  |t Methods of information in medicine  |d Stuttgart : Thieme, 1962  |g 49(2010), 3, Seite 230-237  |h Online-Ressource  |w (DE-627)324822243  |w (DE-600)2030773-1  |w (DE-576)098546341  |x 2511-705X  |7 nnas  |a Classification of sleep stages using multi-wavelet time frequency entropy and LDA 
773 1 8 |g volume:49  |g year:2010  |g number:3  |g pages:230-237  |g extent:8  |a Classification of sleep stages using multi-wavelet time frequency entropy and LDA 
856 4 0 |u https://doi.org/10.3414/ME09-01-0054  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://www.thieme-connect.de/DOI/DOI?10.3414/ME09-01-0054  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20231107 
993 |a Article 
994 |a 2010 
998 |g 172054710  |a Dickhaus, Hartmut  |m 172054710:Dickhaus, Hartmut  |d 910000  |d 999701  |d 50000  |e 910000PD172054710  |e 999701PD172054710  |e 50000PD172054710  |k 0/910000/  |k 1/910000/999701/  |k 0/50000/  |p 6  |y j 
998 |g 1105692884  |a Wenz, Heinrich  |m 1105692884:Wenz, Heinrich  |d 910000  |d 950000  |d 950900  |e 910000PW1105692884  |e 950000PW1105692884  |e 950900PW1105692884  |k 0/910000/  |k 1/910000/950000/  |k 2/910000/950000/950900/  |p 5 
999 |a KXP-PPN1869503120  |e 4403512410 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"doi":["10.1055/s-00035037"],"eki":["324822243"],"zdb":["2030773-1"],"issn":["2511-705X"]},"origin":[{"publisher":"Thieme ; Nacke ; Schattauer","dateIssuedDisp":"[1962]-","publisherPlace":"Stuttgart ; Bielefeld ; Stuttgart"}],"part":{"volume":"49","text":"49(2010), 3, Seite 230-237","extent":"8","year":"2010","issue":"3","pages":"230-237"},"pubHistory":["Vol. 1, issue 1 (1962)-"],"language":["eng"],"recId":"324822243","disp":"Classification of sleep stages using multi-wavelet time frequency entropy and LDAMethods of information in medicine","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 23.06.2018"],"title":[{"title":"Methods of information in medicine","title_sort":"Methods of information in medicine"}]}],"physDesc":[{"extent":"8 S."}],"name":{"displayForm":["L. Fraiwan, K. Lweesy, N. Khasawneh, M. Fraiwan, H. Wenz, H. Dickhaus"]},"id":{"doi":["10.3414/ME09-01-0054"],"eki":["1869503120"]},"origin":[{"dateIssuedDisp":"January 20, 2010","dateIssuedKey":"2010"}],"language":["eng"],"recId":"1869503120","note":["Gesehen am 07.11.2023"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"person":[{"family":"Fraiwan","given":"Luay","display":"Fraiwan, Luay","roleDisplay":"VerfasserIn","role":"aut"},{"display":"Lweesy, Khaldon","roleDisplay":"VerfasserIn","role":"aut","family":"Lweesy","given":"Khaldon"},{"roleDisplay":"VerfasserIn","display":"Khasawneh, N.","role":"aut","family":"Khasawneh","given":"N."},{"role":"aut","roleDisplay":"VerfasserIn","display":"Fraiwan, M.","given":"M.","family":"Fraiwan"},{"family":"Wenz","given":"Heinrich","display":"Wenz, Heinrich","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Hartmut","family":"Dickhaus","role":"aut","display":"Dickhaus, Hartmut","roleDisplay":"VerfasserIn"}],"title":[{"title":"Classification of sleep stages using multi-wavelet time frequency entropy and LDA","title_sort":"Classification of sleep stages using multi-wavelet time frequency entropy and LDA"}]} 
SRT |a FRAIWANLUACLASSIFICA2020