Neural superstatistics for Bayesian estimation of dynamic cognitive models

Mathematical models of cognition are often memoryless and ignore potential fluctuations of their parameters. However, human cognition is inherently dynamic. Thus, we propose to augment mechanistic cognitive models with a temporal dimension and estimate the resulting dynamics from a superstatistics p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schumacher, Lukas (VerfasserIn) , Bürkner, Paul-Christian (VerfasserIn) , Voß, Andreas (VerfasserIn) , Köthe, Ullrich (VerfasserIn) , Radev, Stefan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2023
In: Scientific reports
Year: 2023, Jahrgang: 13, Pages: 1-16
ISSN:2045-2322
DOI:10.1038/s41598-023-40278-3
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41598-023-40278-3
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41598-023-40278-3
Volltext
Verfasserangaben:Lukas Schumacher, Paul-Christian Bürkner, Andreas Voss, Ullrich Köthe & Stefan T. Radev

MARC

LEADER 00000caa a2200000 c 4500
001 1870876695
003 DE-627
005 20240307040849.0
007 cr uuu---uuuuu
008 231122s2023 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41598-023-40278-3  |2 doi 
035 |a (DE-627)1870876695 
035 |a (DE-599)KXP1870876695 
035 |a (OCoLC)1425209362 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 11  |2 sdnb 
100 1 |a Schumacher, Lukas  |d 1991-  |e VerfasserIn  |0 (DE-588)1310760098  |0 (DE-627)1870877160  |4 aut 
245 1 0 |a Neural superstatistics for Bayesian estimation of dynamic cognitive models  |c Lukas Schumacher, Paul-Christian Bürkner, Andreas Voss, Ullrich Köthe & Stefan T. Radev 
264 1 |c 2023 
300 |b Illustrationen 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht: 23. August 2023 
500 |a Gesehen am 22.11.2023 
520 |a Mathematical models of cognition are often memoryless and ignore potential fluctuations of their parameters. However, human cognition is inherently dynamic. Thus, we propose to augment mechanistic cognitive models with a temporal dimension and estimate the resulting dynamics from a superstatistics perspective. Such a model entails a hierarchy between a low-level observation model and a high-level transition model. The observation model describes the local behavior of a system, and the transition model specifies how the parameters of the observation model evolve over time. To overcome the estimation challenges resulting from the complexity of superstatistical models, we develop and validate a simulation-based deep learning method for Bayesian inference, which can recover both time-varying and time-invariant parameters. We first benchmark our method against two existing frameworks capable of estimating time-varying parameters. We then apply our method to fit a dynamic version of the diffusion decision model to long time series of human response times data. Our results show that the deep learning approach is very efficient in capturing the temporal dynamics of the model. Furthermore, we show that the erroneous assumption of static or homogeneous parameters will hide important temporal information. 
650 4 |a Human behaviour 
650 4 |a Statistics 
700 1 |a Bürkner, Paul-Christian  |e VerfasserIn  |4 aut 
700 1 |a Voß, Andreas  |d 1972-  |e VerfasserIn  |0 (DE-588)1028372574  |0 (DE-627)730618919  |0 (DE-576)375905065  |4 aut 
700 1 |a Köthe, Ullrich  |e VerfasserIn  |0 (DE-588)123963435  |0 (DE-627)594480884  |0 (DE-576)304484520  |4 aut 
700 1 |a Radev, Stefan  |d 1993-  |e VerfasserIn  |0 (DE-588)1155312392  |0 (DE-627)1016724993  |0 (DE-576)501536248  |4 aut 
773 0 8 |i Enthalten in  |t Scientific reports  |d [London] : Springer Nature, 2011  |g 13(2023), Artikel-ID 13778, Seite 1-16  |h Online-Ressource  |w (DE-627)663366712  |w (DE-600)2615211-3  |w (DE-576)346641179  |x 2045-2322  |7 nnas  |a Neural superstatistics for Bayesian estimation of dynamic cognitive models 
773 1 8 |g volume:13  |g year:2023  |g elocationid:13778  |g pages:1-16  |g extent:16  |a Neural superstatistics for Bayesian estimation of dynamic cognitive models 
856 4 0 |u https://doi.org/10.1038/s41598-023-40278-3  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41598-023-40278-3  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20231122 
993 |a Article 
994 |a 2023 
998 |g 1155312392  |a Radev, Stefan  |m 1155312392:Radev, Stefan  |d 700000  |d 728500  |e 700000PR1155312392  |e 728500PR1155312392  |k 0/700000/  |k 1/700000/728500/  |p 5  |y j 
998 |g 123963435  |a Köthe, Ullrich  |m 123963435:Köthe, Ullrich  |d 700000  |d 708070  |e 700000PK123963435  |e 708070PK123963435  |k 0/700000/  |k 1/700000/708070/  |p 4 
998 |g 1028372574  |a Voß, Andreas  |m 1028372574:Voß, Andreas  |d 100000  |d 100200  |e 100000PV1028372574  |e 100200PV1028372574  |k 0/100000/  |k 1/100000/100200/  |p 3 
998 |g 1310760098  |a Schumacher, Lukas  |m 1310760098:Schumacher, Lukas  |d 100000  |d 100200  |e 100000PS1310760098  |e 100200PS1310760098  |k 0/100000/  |k 1/100000/100200/  |p 1  |x j 
999 |a KXP-PPN1870876695  |e 4415627609 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Online veröffentlicht: 23. August 2023","Gesehen am 22.11.2023"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"title":[{"title_sort":"Neural superstatistics for Bayesian estimation of dynamic cognitive models","title":"Neural superstatistics for Bayesian estimation of dynamic cognitive models"}],"relHost":[{"pubHistory":["1, article number 1 (2011)-"],"origin":[{"publisher":"Springer Nature ; Nature Publishing Group","dateIssuedKey":"2011","dateIssuedDisp":"2011-","publisherPlace":"[London] ; London"}],"part":{"extent":"16","text":"13(2023), Artikel-ID 13778, Seite 1-16","volume":"13","year":"2023","pages":"1-16"},"title":[{"title_sort":"Scientific reports","title":"Scientific reports"}],"id":{"eki":["663366712"],"issn":["2045-2322"],"zdb":["2615211-3"]},"note":["Gesehen am 12.07.24"],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"663366712","physDesc":[{"extent":"Online-Ressource"}],"disp":"Neural superstatistics for Bayesian estimation of dynamic cognitive modelsScientific reports"}],"person":[{"display":"Schumacher, Lukas","family":"Schumacher","given":"Lukas","role":"aut"},{"family":"Bürkner","role":"aut","given":"Paul-Christian","display":"Bürkner, Paul-Christian"},{"role":"aut","given":"Andreas","family":"Voß","display":"Voß, Andreas"},{"display":"Köthe, Ullrich","family":"Köthe","given":"Ullrich","role":"aut"},{"display":"Radev, Stefan","family":"Radev","role":"aut","given":"Stefan"}],"origin":[{"dateIssuedDisp":"2023","dateIssuedKey":"2023"}],"physDesc":[{"extent":"16 S.","noteIll":"Illustrationen"}],"recId":"1870876695","id":{"eki":["1870876695"],"doi":["10.1038/s41598-023-40278-3"]},"name":{"displayForm":["Lukas Schumacher, Paul-Christian Bürkner, Andreas Voss, Ullrich Köthe & Stefan T. Radev"]}} 
SRT |a SCHUMACHERNEURALSUPE2023