Head selection parsers and LSTM labelers

This resource contains code, data and pre-trained models for various types of neural dependency parsers and LSTM labelers used in the papers: Do et al. (2017). "What Do We Need to Know About an Unknown Word When Parsing German" Do and Rehbein (2017). "Evaluating LSTM Models for Gramma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Do, Bich-Ngoc (VerfasserIn) , Rehbein, Ines (VerfasserIn) , Frank, Anette (VerfasserIn)
Dokumenttyp: Datenbank Forschungsdaten
Sprache:Englisch
Veröffentlicht: Heidelberg Universität 2023-11-13
DOI:10.11588/data/BPWWJL
Schlagworte:
Online-Zugang:Resolving-System, kostenfrei, Volltext: https://doi.org/10.11588/data/BPWWJL
Verlag, kostenfrei, Volltext: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/BPWWJL
Volltext
Verfasserangaben:Bich-Ngoc Do, Ines Rehbein, Anette Frank
Beschreibung
Zusammenfassung:This resource contains code, data and pre-trained models for various types of neural dependency parsers and LSTM labelers used in the papers: Do et al. (2017). "What Do We Need to Know About an Unknown Word When Parsing German" Do and Rehbein (2017). "Evaluating LSTM Models for Grammatical Function Labelling" The parsers and labelers are inspired by the head-selection parser of Zhang et al., (2017). We extend the parser to use different input features, namely: Word embeddings POS tag embeddings Constituent embeddings (e.g., characters or compound) and their combinations. Grammatical function labeling is formulated as a sequence labeling task. We introduce two new bidirectional LSTMs labelers with different orders of tree nodes (linear and BFS order) and another labeler based on top-down tree LSTMs.
Beschreibung:Produktionsdatum: 2017
Gesehen am 22.11.2023
Beschreibung:Online Resource
DOI:10.11588/data/BPWWJL