Tumor classification of gastrointestinal liver metastases using CT-based radiomics and deep learning

Objectives: The goal of this study is to demonstrate the performance of radiomics and CNN-based classifiers in determining the primary origin of gastrointestinal liver metastases for visually indistinguishable lesions.Methods: In this retrospective, IRB-approved study, 31 pancreatic cancer patients...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tharmaseelan, Hishan (VerfasserIn) , Vellala, Abhinay K. (VerfasserIn) , Hertel, Alexander (VerfasserIn) , Tollens, Fabian (VerfasserIn) , Rotkopf, Lukas Thomas (VerfasserIn) , Rink, Johann (VerfasserIn) , Woźnicki, Piotr (VerfasserIn) , Ayx, Isabelle (VerfasserIn) , Bartling, Sönke (VerfasserIn) , Nörenberg, Dominik (VerfasserIn) , Schönberg, Stefan (VerfasserIn) , Froelich, Matthias F. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2023
In: Cancer imaging
Year: 2023, Jahrgang: 23, Pages: 1-9
ISSN:1470-7330
DOI:10.1186/s40644-023-00612-4
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1186/s40644-023-00612-4
Volltext
Verfasserangaben:Hishan Tharmaseelan, Abhinay K. Vellala, Alexander Hertel, Fabian Tollens, Lukas T. Rotkopf, Johann Rink, Piotr Woźnicki, Isabelle Ayx, Sönke Bartling, Dominik Nörenberg, Stefan O. Schoenberg and Matthias F. Froelich

MARC

LEADER 00000caa a2200000 c 4500
001 187100358X
003 DE-627
005 20240307040732.0
007 cr uuu---uuuuu
008 231123s2023 xx |||||o 00| ||eng c
024 7 |a 10.1186/s40644-023-00612-4  |2 doi 
035 |a (DE-627)187100358X 
035 |a (DE-599)KXP187100358X 
035 |a (OCoLC)1425209231 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Tharmaseelan, Hishan  |d 1998-  |e VerfasserIn  |0 (DE-588)1263256996  |0 (DE-627)1811431747  |4 aut 
245 1 0 |a Tumor classification of gastrointestinal liver metastases using CT-based radiomics and deep learning  |c Hishan Tharmaseelan, Abhinay K. Vellala, Alexander Hertel, Fabian Tollens, Lukas T. Rotkopf, Johann Rink, Piotr Woźnicki, Isabelle Ayx, Sönke Bartling, Dominik Nörenberg, Stefan O. Schoenberg and Matthias F. Froelich 
264 1 |c 2023 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Veröffentlicht: 5. Oktober 2023 
500 |a Gesehen am 23.11.2023 
520 |a Objectives: The goal of this study is to demonstrate the performance of radiomics and CNN-based classifiers in determining the primary origin of gastrointestinal liver metastases for visually indistinguishable lesions.Methods: In this retrospective, IRB-approved study, 31 pancreatic cancer patients with 861 lesions (median age [IQR]: 65.39 [56.87, 75.08], 48.4% male) and 47 colorectal cancer patients with 435 lesions (median age [IQR]: 65.79 [56.99, 74.62], 63.8% male) were enrolled. A pretrained nnU-Net performed automated segmentation of 1296 liver lesions. Radiomics features for each lesion were extracted using pyradiomics. The performance of several radiomics-based machine-learning classifiers was investigated for the lesions and compared to an image-based deep-learning approach using a DenseNet-121. The performance was evaluated by AUC/ROC analysis. Results: The radiomics-based K-nearest neighbor classifier showed the best performance on an independent test set with AUC values of 0.87 and an accuracy of 0.67. In comparison, the image-based DenseNet-121-classifier reached an AUC of 0.80 and an accuracy of 0.83. Conclusions: CT-based radiomics and deep learning can distinguish the etiology of liver metastases from gastrointestinal primary tumors. Compared to deep learning, radiomics based models showed a varying generalizability in distinguishing liver metastases from colorectal cancer and pancreatic adenocarcinoma. 
650 4 |a Deep learning 
650 4 |a Gastrointestinal 
650 4 |a Machine learning 
650 4 |a Metastases 
650 4 |a Radiomics 
700 1 |a Vellala, Abhinay K.  |e VerfasserIn  |0 (DE-588)1310903700  |0 (DE-627)1871004810  |4 aut 
700 1 |a Hertel, Alexander  |d 1994-  |e VerfasserIn  |0 (DE-588)1259070824  |0 (DE-627)1805891758  |4 aut 
700 1 |a Tollens, Fabian  |d 1993-  |e VerfasserIn  |0 (DE-588)1158694911  |0 (DE-627)1020771615  |0 (DE-576)504310925  |4 aut 
700 1 |a Rotkopf, Lukas Thomas  |d 1992-  |e VerfasserIn  |0 (DE-588)1246822814  |0 (DE-627)1779915187  |4 aut 
700 1 |a Rink, Johann  |d 1988-  |e VerfasserIn  |0 (DE-588)1160454043  |0 (DE-627)1023629909  |0 (DE-576)505901277  |4 aut 
700 1 |a Woźnicki, Piotr  |e VerfasserIn  |4 aut 
700 1 |a Ayx, Isabelle  |d 1988-  |e VerfasserIn  |0 (DE-588)1052154514  |0 (DE-627)787934178  |0 (DE-576)407912959  |4 aut 
700 1 |a Bartling, Sönke  |e VerfasserIn  |4 aut 
700 1 |a Nörenberg, Dominik  |e VerfasserIn  |0 (DE-588)1064719996  |0 (DE-627)814432123  |0 (DE-576)424084228  |4 aut 
700 1 |a Schönberg, Stefan  |d 1969-  |e VerfasserIn  |0 (DE-588)131557912  |0 (DE-627)510700624  |0 (DE-576)298584891  |4 aut 
700 1 |a Froelich, Matthias F.  |d 1991-  |e VerfasserIn  |0 (DE-588)1170833756  |0 (DE-627)1040131557  |0 (DE-576)512678359  |4 aut 
773 0 8 |i Enthalten in  |t Cancer imaging  |d London : BioMed Central, 2000  |g 23(2023), Artikel-ID 95, Seite 1-9  |h Online-Ressource  |w (DE-627)36374732X  |w (DE-600)2104862-9  |w (DE-576)34726624X  |x 1470-7330  |7 nnas  |a Tumor classification of gastrointestinal liver metastases using CT-based radiomics and deep learning 
773 1 8 |g volume:23  |g year:2023  |g elocationid:95  |g pages:1-9  |g extent:9  |a Tumor classification of gastrointestinal liver metastases using CT-based radiomics and deep learning 
856 4 0 |u https://doi.org/10.1186/s40644-023-00612-4  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20231123 
993 |a Article 
994 |a 2023 
998 |g 1170833756  |a Froelich, Matthias F.  |m 1170833756:Froelich, Matthias F.  |d 60000  |d 62900  |e 60000PF1170833756  |e 62900PF1170833756  |k 0/60000/  |k 1/60000/62900/  |p 12  |y j 
998 |g 131557912  |a Schönberg, Stefan  |m 131557912:Schönberg, Stefan  |d 60000  |d 62900  |e 60000PS131557912  |e 62900PS131557912  |k 0/60000/  |k 1/60000/62900/  |p 11 
998 |g 1064719996  |a Nörenberg, Dominik  |m 1064719996:Nörenberg, Dominik  |d 60000  |d 62900  |e 60000PN1064719996  |e 62900PN1064719996  |k 0/60000/  |k 1/60000/62900/  |p 10 
998 |g 1052154514  |a Ayx, Isabelle  |m 1052154514:Ayx, Isabelle  |d 60000  |d 62900  |e 60000PA1052154514  |e 62900PA1052154514  |k 0/60000/  |k 1/60000/62900/  |p 8 
998 |g 1160454043  |a Rink, Johann  |m 1160454043:Rink, Johann  |d 60000  |d 62900  |e 60000PR1160454043  |e 62900PR1160454043  |k 0/60000/  |k 1/60000/62900/  |p 6 
998 |g 1246822814  |a Rotkopf, Lukas Thomas  |m 1246822814:Rotkopf, Lukas Thomas  |d 50000  |e 50000PR1246822814  |k 0/50000/  |p 5 
998 |g 1158694911  |a Tollens, Fabian  |m 1158694911:Tollens, Fabian  |d 60000  |d 62900  |e 60000PT1158694911  |e 62900PT1158694911  |k 0/60000/  |k 1/60000/62900/  |p 4 
998 |g 1310903700  |a Vellala, Abhinay K.  |m 1310903700:Vellala, Abhinay K.  |d 60000  |d 62900  |e 60000PV1310903700  |e 62900PV1310903700  |k 0/60000/  |k 1/60000/62900/  |p 2 
998 |g 1263256996  |a Tharmaseelan, Hishan  |m 1263256996:Tharmaseelan, Hishan  |d 60000  |e 60000PT1263256996  |k 0/60000/  |p 1  |x j 
999 |a KXP-PPN187100358X  |e 4416272561 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"2023"}],"note":["Veröffentlicht: 5. Oktober 2023","Gesehen am 23.11.2023"],"title":[{"title":"Tumor classification of gastrointestinal liver metastases using CT-based radiomics and deep learning","title_sort":"Tumor classification of gastrointestinal liver metastases using CT-based radiomics and deep learning"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"name":{"displayForm":["Hishan Tharmaseelan, Abhinay K. Vellala, Alexander Hertel, Fabian Tollens, Lukas T. Rotkopf, Johann Rink, Piotr Woźnicki, Isabelle Ayx, Sönke Bartling, Dominik Nörenberg, Stefan O. Schoenberg and Matthias F. Froelich"]},"physDesc":[{"extent":"9 S."}],"relHost":[{"recId":"36374732X","physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["36374732X"],"issn":["1470-7330"],"zdb":["2104862-9"]},"origin":[{"publisher":"BioMed Central ; BMC, part of Springer Nature","dateIssuedKey":"2000","dateIssuedDisp":"2000-","publisherPlace":"London ; Heidelberg ; New York, NY"}],"pubHistory":["1.2000 -"],"note":["Gesehen am 20.03.23"],"title":[{"title":"Cancer imaging","title_sort":"Cancer imaging","subtitle":"the official publication of the International Cancer Imaging Society"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Tumor classification of gastrointestinal liver metastases using CT-based radiomics and deep learningCancer imaging","language":["eng"],"part":{"volume":"23","extent":"9","text":"23(2023), Artikel-ID 95, Seite 1-9","pages":"1-9","year":"2023"}}],"recId":"187100358X","id":{"doi":["10.1186/s40644-023-00612-4"],"eki":["187100358X"]},"person":[{"family":"Tharmaseelan","display":"Tharmaseelan, Hishan","role":"aut","given":"Hishan"},{"role":"aut","given":"Abhinay K.","family":"Vellala","display":"Vellala, Abhinay K."},{"family":"Hertel","display":"Hertel, Alexander","given":"Alexander","role":"aut"},{"role":"aut","given":"Fabian","family":"Tollens","display":"Tollens, Fabian"},{"given":"Lukas Thomas","role":"aut","display":"Rotkopf, Lukas Thomas","family":"Rotkopf"},{"family":"Rink","display":"Rink, Johann","role":"aut","given":"Johann"},{"family":"Woźnicki","display":"Woźnicki, Piotr","given":"Piotr","role":"aut"},{"given":"Isabelle","role":"aut","display":"Ayx, Isabelle","family":"Ayx"},{"display":"Bartling, Sönke","family":"Bartling","given":"Sönke","role":"aut"},{"role":"aut","given":"Dominik","display":"Nörenberg, Dominik","family":"Nörenberg"},{"given":"Stefan","role":"aut","display":"Schönberg, Stefan","family":"Schönberg"},{"role":"aut","given":"Matthias F.","display":"Froelich, Matthias F.","family":"Froelich"}],"language":["eng"]} 
SRT |a THARMASEELTUMORCLASS2023