Two invertible networks for the matrix element method

The matrix element method is widely considered the ultimate LHC inference tool for small event numbers. We show how a combination of two conditional generative neural networks encodes the QCD radiation and detector effects without any simplifying assumptions, while keeping the computation of likelih...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Butter, Anja (VerfasserIn) , Heimel, Theo (VerfasserIn) , Martini, Till (VerfasserIn) , Peitzsch, Sascha (VerfasserIn) , Plehn, Tilman (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 14-09-2023
In: SciPost physics
Year: 2023, Jahrgang: 15, Heft: 3, Pages: 1-24
ISSN:2542-4653
DOI:10.21468/SciPostPhys.15.3.094
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.21468/SciPostPhys.15.3.094
Verlag, lizenzpflichtig, Volltext: https://scipost.org/10.21468/SciPostPhys.15.3.094
Volltext
Verfasserangaben:Anja Butter, Theo Heimel, Till Martini, Sascha Peitzsch and Tilman Plehn
Beschreibung
Zusammenfassung:The matrix element method is widely considered the ultimate LHC inference tool for small event numbers. We show how a combination of two conditional generative neural networks encodes the QCD radiation and detector effects without any simplifying assumptions, while keeping the computation of likelihoods for individual events numerically efficient. We illustrate our approach for the CP-violating phase of the top Yukawa coupling in associated Higgs and single-top production. Currently, the limiting factor for the precision of our approach is jet combinatorics.
Beschreibung:Veröffentlicht: 14. September 2023
Gesehen am 28.11.2023
Beschreibung:Online Resource
ISSN:2542-4653
DOI:10.21468/SciPostPhys.15.3.094