Neural rerankers for dependency parsing

This resource contains code for different types of neural rerankers (RCNN, RCNN-shared and GCN) from the paper: Do and Rehbein (2020). "Neural Reranking for Dependency Parsing: An Evaluation". We also include in this resource the pre-trained models of different rerankers on 3 languages: En...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Do, Bich-Ngoc (VerfasserIn) , Rehbein, Ines (VerfasserIn)
Dokumenttyp: Datenbank Forschungsdaten
Sprache:Englisch
Veröffentlicht: Heidelberg Universität 2023-11-13
DOI:10.11588/data/NNGPQZ
Schlagworte:
Online-Zugang:Resolving-System, kostenfrei, Volltext: https://doi.org/10.11588/data/NNGPQZ
Verlag, kostenfrei, Volltext: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/NNGPQZ
Verlag, kostenfrei, Volltext: https://github.com/bichngocdo/neural-tree-reranking
Volltext
Verfasserangaben:Bich-Ngoc Do, Ines Rehbein

MARC

LEADER 00000nmi a2200000 c 4500
001 1871574706
003 DE-627
005 20231129110217.0
006 su| d|o |0 |0
007 cr uuu---uuuuu
008 231129c20239999xx |o | eng c
024 7 |a 10.11588/data/NNGPQZ  |2 doi 
035 |a (DE-627)1871574706 
035 |a (DE-599)KXP1871574706 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Do, Bich-Ngoc  |d 1989-  |e VerfasserIn  |0 (DE-588)1208354051  |0 (DE-627)1694619745  |4 aut 
245 1 0 |a Neural rerankers for dependency parsing  |c Bich-Ngoc Do, Ines Rehbein 
264 1 |a Heidelberg  |b Universität  |c 2023-11-13 
300 |a 1 Online-Ressource (12 Files) 
336 |a Text  |b txt  |2 rdacontent 
336 |a Computerdaten  |b cod  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Produktionsdatum: 2020 
500 |a Gesehen am 22.11.2023 
520 |a This resource contains code for different types of neural rerankers (RCNN, RCNN-shared and GCN) from the paper: Do and Rehbein (2020). "Neural Reranking for Dependency Parsing: An Evaluation". We also include in this resource the pre-trained models of different rerankers on 3 languages: English, German and Czech that are used to report results in the paper. 
650 4 |a Arts and Humanities 
650 4 |a Computer and Information Science 
655 7 |a Forschungsdaten  |0 (DE-588)1098579690  |0 (DE-627)857755366  |0 (DE-576)469182156  |2 gnd-content 
655 7 |a Datenbank  |0 (DE-588)4011119-2  |0 (DE-627)106354256  |0 (DE-576)208891943  |2 gnd-content 
700 1 |a Rehbein, Ines  |e VerfasserIn  |0 (DE-588)1207353833  |0 (DE-627)1693632373  |4 aut 
787 0 8 |i Forschungsdaten zu  |a Do, Bich-Ngoc, 1989 -   |t Neural reranking for dependency parsing  |d 2020  |w (DE-627)1818655705 
856 4 0 |u https://doi.org/10.11588/data/NNGPQZ  |x Resolving-System  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/NNGPQZ  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://github.com/bichngocdo/neural-tree-reranking  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a BO 
992 |a 20231129 
993 |a ResearchData 
994 |a 2023 
998 |g 1207353833  |a Rehbein, Ines  |m 1207353833:Rehbein, Ines  |d 90000  |e 90000PR1207353833  |k 0/90000/  |p 2  |y j 
998 |g 1208354051  |a Do, Bich-Ngoc  |m 1208354051:Do, Bich-Ngoc  |p 1  |x j 
999 |a KXP-PPN1871574706  |e 4421676640 
BIB |a Y 
JSO |a {"person":[{"given":"Bich-Ngoc","family":"Do","role":"aut","display":"Do, Bich-Ngoc","roleDisplay":"VerfasserIn"},{"given":"Ines","family":"Rehbein","role":"aut","display":"Rehbein, Ines","roleDisplay":"VerfasserIn"}],"name":{"displayForm":["Bich-Ngoc Do, Ines Rehbein"]},"id":{"eki":["1871574706"],"doi":["10.11588/data/NNGPQZ"]},"title":[{"title":"Neural rerankers for dependency parsing","title_sort":"Neural rerankers for dependency parsing"}],"origin":[{"publisherPlace":"Heidelberg","dateIssuedDisp":"2023-11-13","dateIssuedKey":"2023","publisher":"Universität"}],"recId":"1871574706","language":["eng"],"type":{"bibl":"dataset","media":"Online-Ressource"},"note":["Produktionsdatum: 2020","Gesehen am 22.11.2023"],"physDesc":[{"extent":"1 Online-Ressource (12 Files)"}]} 
SRT |a DOBICHNGOCNEURALRERA2023