Neural rerankers for dependency parsing

This resource contains code for different types of neural rerankers (RCNN, RCNN-shared and GCN) from the paper: Do and Rehbein (2020). "Neural Reranking for Dependency Parsing: An Evaluation". We also include in this resource the pre-trained models of different rerankers on 3 languages: En...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Do, Bich-Ngoc (VerfasserIn) , Rehbein, Ines (VerfasserIn)
Dokumenttyp: Datenbank Forschungsdaten
Sprache:Englisch
Veröffentlicht: Heidelberg Universität 2023-11-13
DOI:10.11588/data/NNGPQZ
Schlagworte:
Online-Zugang:Resolving-System, kostenfrei, Volltext: https://doi.org/10.11588/data/NNGPQZ
Verlag, kostenfrei, Volltext: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/NNGPQZ
Verlag, kostenfrei, Volltext: https://github.com/bichngocdo/neural-tree-reranking
Volltext
Verfasserangaben:Bich-Ngoc Do, Ines Rehbein
Beschreibung
Zusammenfassung:This resource contains code for different types of neural rerankers (RCNN, RCNN-shared and GCN) from the paper: Do and Rehbein (2020). "Neural Reranking for Dependency Parsing: An Evaluation". We also include in this resource the pre-trained models of different rerankers on 3 languages: English, German and Czech that are used to report results in the paper.
Beschreibung:Produktionsdatum: 2020
Gesehen am 22.11.2023
Beschreibung:Online Resource
DOI:10.11588/data/NNGPQZ