Quantum particles from classical statistics

Quantum particles and classical particles are described in a common setting of classical statistical physics. The property of a particle being “classical” or “quantum” ceases to be a basic conceptual difference. The dynamics differs, however, between quantum and classical particles. We describe posi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Wetterich, Christof (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: [November 2010]
In: Annalen der Physik
Year: 2010, Jahrgang: 522, Heft: 11, Pages: 807-848
ISSN:1521-3889
DOI:10.1002/andp.201000088
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1002/andp.201000088
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.201000088
Volltext
Verfasserangaben:C. Wetterich (Institut für Theoretische Physik, Universität Heidelberg,)
Beschreibung
Zusammenfassung:Quantum particles and classical particles are described in a common setting of classical statistical physics. The property of a particle being “classical” or “quantum” ceases to be a basic conceptual difference. The dynamics differs, however, between quantum and classical particles. We describe position, motion and correlations of a quantum particle in terms of observables in a classical statistical ensemble. On the other side, we also construct explicitly the quantum formalism with wave function and Hamiltonian for classical particles. For a suitable time evolution of the classical probabilities and a suitable choice of observables all features of a quantum particle in a potential can be derived from classical statistics, including interference and tunneling. Besides conceptual advances, the treatment of classical and quantum particles in a common formalism could lead to interesting cross-fertilization between classical statistics and quantum physics.
Beschreibung:First published: 05 October 2010
Gesehen am 29.11.2023
Beschreibung:Online Resource
ISSN:1521-3889
DOI:10.1002/andp.201000088