Detecting continuous-variable entanglement in phase space with the Q distribution

We prove a general class of continuous variable entanglement criteria based on the Husimi Q distribution, which represents a quantum state in canonical phase space, by employing a theorem by Lieb and Solovej. We discuss their generality, which roots in the possibility to optimize over the set of con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gärttner, Martin (VerfasserIn) , Haas, Tobias (VerfasserIn) , Noll, Johannes (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 12 October 2023
In: Physical review
Year: 2023, Jahrgang: 108, Heft: 4, Pages: 1-24
ISSN:2469-9934
DOI:10.1103/PhysRevA.108.042410
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1103/PhysRevA.108.042410
Verlag, kostenfrei, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.108.042410
Volltext
Verfasserangaben:Martin Gärttner, Tobias Haas, and Johannes Noll

MARC

LEADER 00000caa a2200000 c 4500
001 1871781639
003 DE-627
005 20240307035415.0
007 cr uuu---uuuuu
008 231201s2023 xx |||||o 00| ||eng c
024 7 |a 10.1103/PhysRevA.108.042410  |2 doi 
035 |a (DE-627)1871781639 
035 |a (DE-599)KXP1871781639 
035 |a (OCoLC)1425209101 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Gärttner, Martin  |d 1985-  |e VerfasserIn  |0 (DE-588)1047469529  |0 (DE-627)778426076  |0 (DE-576)401083527  |4 aut 
245 1 0 |a Detecting continuous-variable entanglement in phase space with the Q distribution  |c Martin Gärttner, Tobias Haas, and Johannes Noll 
264 1 |c 12 October 2023 
300 |b Illustrationen 
300 |a 24 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 01.12.2023 
520 |a We prove a general class of continuous variable entanglement criteria based on the Husimi Q distribution, which represents a quantum state in canonical phase space, by employing a theorem by Lieb and Solovej. We discuss their generality, which roots in the possibility to optimize over the set of concave functions, from the perspective of continuous majorization theory and show that with this approach families of entropic as well as second moment criteria follow as special cases. All derived criteria are compared with corresponding marginal based criteria, and the strength of the phase-space approach is demonstrated for a family of prototypical example states where only our criteria flag entanglement. Furthermore, we explore their optimization prospects in two experimentally relevant scenarios characterized by sparse data: Finite detector resolution and finite statistics. In both scenarios optimization leads to clear improvements enlarging the class of detected states and the signal-to-noise ratio of the detection, respectively. 
700 1 |a Haas, Tobias  |d 1995-  |e VerfasserIn  |0 (DE-588)119770888X  |0 (DE-627)1679441035  |4 aut 
700 1 |a Noll, Johannes  |e VerfasserIn  |0 (DE-588)1311877347  |0 (DE-627)1871783577  |4 aut 
773 0 8 |i Enthalten in  |t Physical review  |d Woodbury, NY : Inst., 2016  |g 108(2023), 4, Artikel-ID 042410, Seite 1-24  |h Online-Ressource  |w (DE-627)845695479  |w (DE-600)2844156-4  |w (DE-576)454495854  |x 2469-9934  |7 nnas  |a Detecting continuous-variable entanglement in phase space with the Q distribution 
773 1 8 |g volume:108  |g year:2023  |g number:4  |g elocationid:042410  |g pages:1-24  |g extent:24  |a Detecting continuous-variable entanglement in phase space with the Q distribution 
856 4 0 |u https://doi.org/10.1103/PhysRevA.108.042410  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://link.aps.org/doi/10.1103/PhysRevA.108.042410  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20231201 
993 |a Article 
994 |a 2023 
998 |g 1311877347  |a Noll, Johannes  |m 1311877347:Noll, Johannes  |p 3  |y j 
998 |g 119770888X  |a Haas, Tobias  |m 119770888X:Haas, Tobias  |p 2 
998 |g 1047469529  |a Gärttner, Martin  |m 1047469529:Gärttner, Martin  |d 130000  |e 130000PG1047469529  |k 0/130000/  |p 1  |x j 
999 |a KXP-PPN1871781639  |e 4424312860 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Martin Gärttner, Tobias Haas, and Johannes Noll"]},"relHost":[{"title":[{"title_sort":"Physical review","title":"Physical review"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"id":{"zdb":["2844156-4"],"issn":["2469-9934"],"eki":["845695479"]},"physDesc":[{"extent":"Online-Ressource"}],"recId":"845695479","titleAlt":[{"title":"Atomic, molecular, and optical physics and quantum information"}],"name":{"displayForm":["publ. by The American Institute of Physics"]},"part":{"pages":"1-24","volume":"108","text":"108(2023), 4, Artikel-ID 042410, Seite 1-24","extent":"24","issue":"4","year":"2023"},"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"American Institute of Physics","role":"isb"},{"display":"American Physical Society","roleDisplay":"Herausgebendes Organ","role":"isb"}],"origin":[{"dateIssuedKey":"2016","publisherPlace":"Woodbury, NY","dateIssuedDisp":"2016-","publisher":"Inst."}],"disp":"Detecting continuous-variable entanglement in phase space with the Q distributionPhysical review","pubHistory":["Vol. 93, Iss. 1, January 2016-"]}],"origin":[{"dateIssuedDisp":"12 October 2023","dateIssuedKey":"2023"}],"note":["Gesehen am 01.12.2023"],"person":[{"role":"aut","given":"Martin","family":"Gärttner","display":"Gärttner, Martin","roleDisplay":"VerfasserIn"},{"roleDisplay":"VerfasserIn","family":"Haas","display":"Haas, Tobias","role":"aut","given":"Tobias"},{"role":"aut","given":"Johannes","roleDisplay":"VerfasserIn","family":"Noll","display":"Noll, Johannes"}],"title":[{"title":"Detecting continuous-variable entanglement in phase space with the Q distribution","title_sort":"Detecting continuous-variable entanglement in phase space with the Q distribution"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"eki":["1871781639"],"doi":["10.1103/PhysRevA.108.042410"]},"language":["eng"],"physDesc":[{"noteIll":"Illustrationen","extent":"24 S."}],"recId":"1871781639"} 
SRT |a GAERTTNERMDETECTINGC1220