Detecting continuous-variable entanglement in phase space with the Q distribution
We prove a general class of continuous variable entanglement criteria based on the Husimi Q distribution, which represents a quantum state in canonical phase space, by employing a theorem by Lieb and Solovej. We discuss their generality, which roots in the possibility to optimize over the set of con...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
12 October 2023
|
| In: |
Physical review
Year: 2023, Jahrgang: 108, Heft: 4, Pages: 1-24 |
| ISSN: | 2469-9934 |
| DOI: | 10.1103/PhysRevA.108.042410 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1103/PhysRevA.108.042410 Verlag, kostenfrei, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.108.042410 |
| Verfasserangaben: | Martin Gärttner, Tobias Haas, and Johannes Noll |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1871781639 | ||
| 003 | DE-627 | ||
| 005 | 20240307035415.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 231201s2023 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1103/PhysRevA.108.042410 |2 doi | |
| 035 | |a (DE-627)1871781639 | ||
| 035 | |a (DE-599)KXP1871781639 | ||
| 035 | |a (OCoLC)1425209101 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Gärttner, Martin |d 1985- |e VerfasserIn |0 (DE-588)1047469529 |0 (DE-627)778426076 |0 (DE-576)401083527 |4 aut | |
| 245 | 1 | 0 | |a Detecting continuous-variable entanglement in phase space with the Q distribution |c Martin Gärttner, Tobias Haas, and Johannes Noll |
| 264 | 1 | |c 12 October 2023 | |
| 300 | |b Illustrationen | ||
| 300 | |a 24 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 01.12.2023 | ||
| 520 | |a We prove a general class of continuous variable entanglement criteria based on the Husimi Q distribution, which represents a quantum state in canonical phase space, by employing a theorem by Lieb and Solovej. We discuss their generality, which roots in the possibility to optimize over the set of concave functions, from the perspective of continuous majorization theory and show that with this approach families of entropic as well as second moment criteria follow as special cases. All derived criteria are compared with corresponding marginal based criteria, and the strength of the phase-space approach is demonstrated for a family of prototypical example states where only our criteria flag entanglement. Furthermore, we explore their optimization prospects in two experimentally relevant scenarios characterized by sparse data: Finite detector resolution and finite statistics. In both scenarios optimization leads to clear improvements enlarging the class of detected states and the signal-to-noise ratio of the detection, respectively. | ||
| 700 | 1 | |a Haas, Tobias |d 1995- |e VerfasserIn |0 (DE-588)119770888X |0 (DE-627)1679441035 |4 aut | |
| 700 | 1 | |a Noll, Johannes |e VerfasserIn |0 (DE-588)1311877347 |0 (DE-627)1871783577 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Physical review |d Woodbury, NY : Inst., 2016 |g 108(2023), 4, Artikel-ID 042410, Seite 1-24 |h Online-Ressource |w (DE-627)845695479 |w (DE-600)2844156-4 |w (DE-576)454495854 |x 2469-9934 |7 nnas |a Detecting continuous-variable entanglement in phase space with the Q distribution |
| 773 | 1 | 8 | |g volume:108 |g year:2023 |g number:4 |g elocationid:042410 |g pages:1-24 |g extent:24 |a Detecting continuous-variable entanglement in phase space with the Q distribution |
| 856 | 4 | 0 | |u https://doi.org/10.1103/PhysRevA.108.042410 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://link.aps.org/doi/10.1103/PhysRevA.108.042410 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20231201 | ||
| 993 | |a Article | ||
| 994 | |a 2023 | ||
| 998 | |g 1311877347 |a Noll, Johannes |m 1311877347:Noll, Johannes |p 3 |y j | ||
| 998 | |g 119770888X |a Haas, Tobias |m 119770888X:Haas, Tobias |p 2 | ||
| 998 | |g 1047469529 |a Gärttner, Martin |m 1047469529:Gärttner, Martin |d 130000 |e 130000PG1047469529 |k 0/130000/ |p 1 |x j | ||
| 999 | |a KXP-PPN1871781639 |e 4424312860 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["Martin Gärttner, Tobias Haas, and Johannes Noll"]},"relHost":[{"title":[{"title_sort":"Physical review","title":"Physical review"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"id":{"zdb":["2844156-4"],"issn":["2469-9934"],"eki":["845695479"]},"physDesc":[{"extent":"Online-Ressource"}],"recId":"845695479","titleAlt":[{"title":"Atomic, molecular, and optical physics and quantum information"}],"name":{"displayForm":["publ. by The American Institute of Physics"]},"part":{"pages":"1-24","volume":"108","text":"108(2023), 4, Artikel-ID 042410, Seite 1-24","extent":"24","issue":"4","year":"2023"},"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"American Institute of Physics","role":"isb"},{"display":"American Physical Society","roleDisplay":"Herausgebendes Organ","role":"isb"}],"origin":[{"dateIssuedKey":"2016","publisherPlace":"Woodbury, NY","dateIssuedDisp":"2016-","publisher":"Inst."}],"disp":"Detecting continuous-variable entanglement in phase space with the Q distributionPhysical review","pubHistory":["Vol. 93, Iss. 1, January 2016-"]}],"origin":[{"dateIssuedDisp":"12 October 2023","dateIssuedKey":"2023"}],"note":["Gesehen am 01.12.2023"],"person":[{"role":"aut","given":"Martin","family":"Gärttner","display":"Gärttner, Martin","roleDisplay":"VerfasserIn"},{"roleDisplay":"VerfasserIn","family":"Haas","display":"Haas, Tobias","role":"aut","given":"Tobias"},{"role":"aut","given":"Johannes","roleDisplay":"VerfasserIn","family":"Noll","display":"Noll, Johannes"}],"title":[{"title":"Detecting continuous-variable entanglement in phase space with the Q distribution","title_sort":"Detecting continuous-variable entanglement in phase space with the Q distribution"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"eki":["1871781639"],"doi":["10.1103/PhysRevA.108.042410"]},"language":["eng"],"physDesc":[{"noteIll":"Illustrationen","extent":"24 S."}],"recId":"1871781639"} | ||
| SRT | |a GAERTTNERMDETECTINGC1220 | ||