Colorectal cancer risk stratification on histological slides based on survival curves predicted by deep learning

Studies have shown that colorectal cancer prognosis can be predicted by deep learning-based analysis of histological tissue sections of the primary tumor. So far, this has been achieved using a binary prediction. Survival curves might contain more detailed information and thus enable a more fine-gra...

Full description

Saved in:
Bibliographic Details
Main Authors: Höhn, Julia (Author) , Krieghoff-Henning, Eva (Author) , Wies, Christoph (Author) , Kiehl, Lennard (Author) , Hetz, Martin J. (Author) , Bucher, Tabea-Clara (Author) , Jonnagaddala, Jitendra (Author) , Zatloukal, Kurt (Author) , Müller, Heimo (Author) , Plass, Markus (Author) , Jungwirth, Emilian (Author) , Gaiser, Timo (Author) , Steeg, Matthias (Author) , Holland-Letz, Tim (Author) , Brenner, Hermann (Author) , Hoffmeister, Michael (Author) , Brinker, Titus Josef (Author)
Format: Article (Journal)
Language:English
Published: 26 September 2023
In: npj precision oncology
Year: 2023, Volume: 7, Pages: 1-12
ISSN:2397-768X
DOI:10.1038/s41698-023-00451-3
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41698-023-00451-3
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41698-023-00451-3
Get full text
Author Notes:Julia Höhn, Eva Krieghoff-Henning, Christoph Wies, Lennard Kiehl, Martin J. Hetz, Tabea-Clara Bucher, Jitendra Jonnagaddala, Kurt Zatloukal, Heimo Müller, Markus Plass, Emilian Jungwirth, Timo Gaiser, Matthias Steeg, Tim Holland-Letz, Hermann Brenner, Michael Hoffmeister and Titus J. Brinker

MARC

LEADER 00000caa a2200000 c 4500
001 1871925398
003 DE-627
005 20240808160356.0
007 cr uuu---uuuuu
008 231205s2023 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41698-023-00451-3  |2 doi 
035 |a (DE-627)1871925398 
035 |a (DE-599)KXP1871925398 
035 |a (OCoLC)1425209037 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Höhn, Julia  |e VerfasserIn  |0 (DE-588)1236930169  |0 (DE-627)1762751291  |4 aut 
245 1 0 |a Colorectal cancer risk stratification on histological slides based on survival curves predicted by deep learning  |c Julia Höhn, Eva Krieghoff-Henning, Christoph Wies, Lennard Kiehl, Martin J. Hetz, Tabea-Clara Bucher, Jitendra Jonnagaddala, Kurt Zatloukal, Heimo Müller, Markus Plass, Emilian Jungwirth, Timo Gaiser, Matthias Steeg, Tim Holland-Letz, Hermann Brenner, Michael Hoffmeister and Titus J. Brinker 
264 1 |c 26 September 2023 
300 |b Illustrationen 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht: 26. September 2023 
500 |a Gesehen am 05.12.2023 
520 |a Studies have shown that colorectal cancer prognosis can be predicted by deep learning-based analysis of histological tissue sections of the primary tumor. So far, this has been achieved using a binary prediction. Survival curves might contain more detailed information and thus enable a more fine-grained risk prediction. Therefore, we established survival curve-based CRC survival predictors and benchmarked them against standard binary survival predictors, comparing their performance extensively on the clinical high and low risk subsets of one internal and three external cohorts. Survival curve-based risk prediction achieved a very similar risk stratification to binary risk prediction for this task. Exchanging other components of the pipeline, namely input tissue and feature extractor, had largely identical effects on model performance independently of the type of risk prediction. An ensemble of all survival curve-based models exhibited a more robust performance, as did a similar ensemble based on binary risk prediction. Patients could be further stratified within clinical risk groups. However, performance still varied across cohorts, indicating limited generalization of all investigated image analysis pipelines, whereas models using clinical data performed robustly on all cohorts. 
650 4 |a Colorectal cancer 
650 4 |a Mathematics and computing 
650 4 |a Prognostic markers 
700 1 |a Krieghoff-Henning, Eva  |d 1976-  |e VerfasserIn  |0 (DE-588)132407914  |0 (DE-627)52267786X  |0 (DE-576)299126706  |4 aut 
700 1 |a Wies, Christoph  |e VerfasserIn  |0 (DE-588)1307730442  |0 (DE-627)1868667650  |4 aut 
700 1 |a Kiehl, Lennard  |e VerfasserIn  |4 aut 
700 1 |a Hetz, Martin J.  |e VerfasserIn  |4 aut 
700 1 |a Bucher, Tabea-Clara  |e VerfasserIn  |4 aut 
700 1 |a Jonnagaddala, Jitendra  |e VerfasserIn  |4 aut 
700 1 |a Zatloukal, Kurt  |e VerfasserIn  |4 aut 
700 1 |a Müller, Heimo  |e VerfasserIn  |4 aut 
700 1 |a Plass, Markus  |e VerfasserIn  |4 aut 
700 1 |a Jungwirth, Emilian  |e VerfasserIn  |4 aut 
700 1 |a Gaiser, Timo  |d 1975-  |e VerfasserIn  |0 (DE-588)1030402280  |0 (DE-627)735221685  |0 (DE-576)378226533  |4 aut 
700 1 |a Steeg, Matthias  |e VerfasserIn  |0 (DE-588)1271490005  |0 (DE-627)1820321053  |4 aut 
700 1 |a Holland-Letz, Tim  |e VerfasserIn  |0 (DE-588)142336491  |0 (DE-627)658880470  |0 (DE-576)343311291  |4 aut 
700 1 |a Brenner, Hermann  |e VerfasserIn  |0 (DE-588)1020516445  |0 (DE-627)691247005  |0 (DE-576)360642136  |4 aut 
700 1 |a Hoffmeister, Michael  |d 1973-  |e VerfasserIn  |0 (DE-588)134103726  |0 (DE-627)560880820  |0 (DE-576)277089565  |4 aut 
700 1 |a Brinker, Titus Josef  |d 1990-  |e VerfasserIn  |0 (DE-588)1156309395  |0 (DE-627)1018860487  |0 (DE-576)502097434  |4 aut 
773 0 8 |i Enthalten in  |t npj precision oncology  |d [London] : Springer Nature, 2017  |g 7(2023), Artikel-ID 98, Seite 1-12  |h Online-Ressource  |w (DE-627)884384454  |w (DE-600)2891458-2  |w (DE-576)486547728  |x 2397-768X  |7 nnas  |a Colorectal cancer risk stratification on histological slides based on survival curves predicted by deep learning 
773 1 8 |g volume:7  |g year:2023  |g elocationid:98  |g pages:1-12  |g extent:12  |a Colorectal cancer risk stratification on histological slides based on survival curves predicted by deep learning 
856 4 0 |u https://doi.org/10.1038/s41698-023-00451-3  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41698-023-00451-3  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20231205 
993 |a Article 
994 |a 2023 
998 |g 1156309395  |a Brinker, Titus Josef  |m 1156309395:Brinker, Titus Josef  |d 50000  |e 50000PB1156309395  |k 0/50000/  |p 17  |y j 
998 |g 134103726  |a Hoffmeister, Michael  |m 134103726:Hoffmeister, Michael  |d 50000  |e 50000PH134103726  |k 0/50000/  |p 16 
998 |g 1020516445  |a Brenner, Hermann  |m 1020516445:Brenner, Hermann  |d 850000  |d 851600  |d 50000  |e 850000PB1020516445  |e 851600PB1020516445  |e 50000PB1020516445  |k 0/850000/  |k 1/850000/851600/  |k 0/50000/  |p 15 
998 |g 142336491  |a Holland-Letz, Tim  |m 142336491:Holland-Letz, Tim  |d 50000  |e 50000PH142336491  |k 0/50000/  |p 14 
998 |g 1271490005  |a Steeg, Matthias  |m 1271490005:Steeg, Matthias  |d 60000  |d 63400  |e 60000PS1271490005  |e 63400PS1271490005  |k 0/60000/  |k 1/60000/63400/  |p 13 
998 |g 1030402280  |a Gaiser, Timo  |m 1030402280:Gaiser, Timo  |d 60000  |e 60000PG1030402280  |k 0/60000/  |p 12 
998 |g 1307730442  |a Wies, Christoph  |m 1307730442:Wies, Christoph  |d 50000  |e 50000PW1307730442  |k 0/50000/  |p 3 
999 |a KXP-PPN1871925398  |e 4425374436 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"eki":["1871925398"],"doi":["10.1038/s41698-023-00451-3"]},"recId":"1871925398","type":{"media":"Online-Ressource","bibl":"article-journal"},"name":{"displayForm":["Julia Höhn, Eva Krieghoff-Henning, Christoph Wies, Lennard Kiehl, Martin J. Hetz, Tabea-Clara Bucher, Jitendra Jonnagaddala, Kurt Zatloukal, Heimo Müller, Markus Plass, Emilian Jungwirth, Timo Gaiser, Matthias Steeg, Tim Holland-Letz, Hermann Brenner, Michael Hoffmeister and Titus J. Brinker"]},"language":["eng"],"physDesc":[{"noteIll":"Illustrationen","extent":"12 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 20. April 2017"],"origin":[{"publisher":"Springer Nature","dateIssuedDisp":"[2017]-","publisherPlace":"[London]"}],"pubHistory":["20 March 2017-"],"id":{"issn":["2397-768X"],"eki":["884384454"],"zdb":["2891458-2"]},"recId":"884384454","name":{"displayForm":["published by Springer Nature in partnership with The Hormel Institute, University of Minnesota"]},"title":[{"title":"npj precision oncology","title_sort":"npj precision oncology","subtitle":"a natureresearch journal"}],"part":{"pages":"1-12","text":"7(2023), Artikel-ID 98, Seite 1-12","volume":"7","year":"2023","extent":"12"},"language":["eng"],"disp":"Colorectal cancer risk stratification on histological slides based on survival curves predicted by deep learningnpj precision oncology","type":{"bibl":"periodical","media":"Online-Ressource"},"titleAlt":[{"title":"a nature research journal"},{"title":"Precision oncology"}]}],"person":[{"display":"Höhn, Julia","role":"aut","family":"Höhn","given":"Julia"},{"role":"aut","display":"Krieghoff-Henning, Eva","family":"Krieghoff-Henning","given":"Eva"},{"family":"Wies","given":"Christoph","role":"aut","display":"Wies, Christoph"},{"given":"Lennard","family":"Kiehl","role":"aut","display":"Kiehl, Lennard"},{"given":"Martin J.","family":"Hetz","role":"aut","display":"Hetz, Martin J."},{"given":"Tabea-Clara","family":"Bucher","display":"Bucher, Tabea-Clara","role":"aut"},{"role":"aut","display":"Jonnagaddala, Jitendra","given":"Jitendra","family":"Jonnagaddala"},{"family":"Zatloukal","given":"Kurt","display":"Zatloukal, Kurt","role":"aut"},{"family":"Müller","given":"Heimo","display":"Müller, Heimo","role":"aut"},{"family":"Plass","given":"Markus","display":"Plass, Markus","role":"aut"},{"given":"Emilian","family":"Jungwirth","role":"aut","display":"Jungwirth, Emilian"},{"given":"Timo","family":"Gaiser","display":"Gaiser, Timo","role":"aut"},{"family":"Steeg","given":"Matthias","display":"Steeg, Matthias","role":"aut"},{"family":"Holland-Letz","given":"Tim","role":"aut","display":"Holland-Letz, Tim"},{"role":"aut","display":"Brenner, Hermann","family":"Brenner","given":"Hermann"},{"role":"aut","display":"Hoffmeister, Michael","given":"Michael","family":"Hoffmeister"},{"family":"Brinker","given":"Titus Josef","role":"aut","display":"Brinker, Titus Josef"}],"title":[{"title_sort":"Colorectal cancer risk stratification on histological slides based on survival curves predicted by deep learning","title":"Colorectal cancer risk stratification on histological slides based on survival curves predicted by deep learning"}],"origin":[{"dateIssuedDisp":"26 September 2023","dateIssuedKey":"2023"}],"note":["Online veröffentlicht: 26. September 2023","Gesehen am 05.12.2023"]} 
SRT |a HOEHNJULIACOLORECTAL2620