The uniqueness theorem for Gysin coherent characteristic classes of singular spaces
We establish a general computational scheme designed for a systematic computation of characteristic classes of singular complex algebraic varieties that satisfy a Gysin axiom in a transverse setup. This scheme is explicitly geometric and of a recursive nature terminating on genera of explicit charac...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
13 October 2023
|
| In: |
Journal of the London Mathematical Society
Year: 2023, Pages: 1-45 |
| ISSN: | 1469-7750 |
| DOI: | 10.1112/jlms.12823 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1112/jlms.12823 Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1112/jlms.12823 |
| Verfasserangaben: | Markus Banagl, Dominik J. Wrazidlo |
MARC
| LEADER | 00000caa a22000002c 4500 | ||
|---|---|---|---|
| 001 | 1876202068 | ||
| 003 | DE-627 | ||
| 005 | 20240307032633.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 231215s2023 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1112/jlms.12823 |2 doi | |
| 035 | |a (DE-627)1876202068 | ||
| 035 | |a (DE-599)KXP1876202068 | ||
| 035 | |a (OCoLC)1425208164 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Banagl, Markus |d 1971- |e VerfasserIn |0 (DE-588)132548232 |0 (DE-627)658065114 |0 (DE-576)185904351 |4 aut | |
| 245 | 1 | 4 | |a The uniqueness theorem for Gysin coherent characteristic classes of singular spaces |c Markus Banagl, Dominik J. Wrazidlo |
| 264 | 1 | |c 13 October 2023 | |
| 300 | |b Illustrationen | ||
| 300 | |a 45 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Online veröffentlicht: 13. Oktober 2023 | ||
| 500 | |a Gesehen am 15.12.2023 | ||
| 520 | |a We establish a general computational scheme designed for a systematic computation of characteristic classes of singular complex algebraic varieties that satisfy a Gysin axiom in a transverse setup. This scheme is explicitly geometric and of a recursive nature terminating on genera of explicit characteristic subvarieties that we construct. It enables us, for example, to apply intersection theory of Schubert varieties to obtain a uniqueness result for such characteristic classes in the homology of an ambient Grassmannian. Our framework applies in particular to the Goresky-MacPherson L\L\-class by virtue of the Gysin restriction formula obtained by the first author in previous work. We illustrate our approach for a systematic computation of the L\L\-class in terms of normally nonsingular expansions in examples of singular Schubert varieties that do not satisfy Poincaré duality over the rationals. | ||
| 700 | 1 | |a Wrazidlo, Dominik |e VerfasserIn |0 (DE-588)1140508032 |0 (DE-627)898523915 |0 (DE-576)493838635 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |a London Mathematical Society |t Journal of the London Mathematical Society |d Oxford : Wiley, 1926 |g (2023), online ahead of print |h Online-Ressource |w (DE-627)270126953 |w (DE-600)1476428-3 |w (DE-576)078129079 |x 1469-7750 |7 nnas |
| 773 | 1 | 8 | |g year:2023 |g pages:1-45 |g extent:45 |a The uniqueness theorem for Gysin coherent characteristic classes of singular spaces |
| 856 | 4 | 0 | |u https://doi.org/10.1112/jlms.12823 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/abs/10.1112/jlms.12823 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20231215 | ||
| 993 | |a Article | ||
| 994 | |a 2023 | ||
| 998 | |g 1140508032 |a Wrazidlo, Dominik |m 1140508032:Wrazidlo, Dominik |d 110000 |d 110400 |e 110000PW1140508032 |e 110400PW1140508032 |k 0/110000/ |k 1/110000/110400/ |p 2 |y j | ||
| 998 | |g 132548232 |a Banagl, Markus |m 132548232:Banagl, Markus |d 110000 |d 110400 |e 110000PB132548232 |e 110400PB132548232 |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN1876202068 |e 4438015839 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"recId":"1876202068","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Online veröffentlicht: 13. Oktober 2023","Gesehen am 15.12.2023"],"person":[{"role":"aut","display":"Banagl, Markus","roleDisplay":"VerfasserIn","given":"Markus","family":"Banagl"},{"display":"Wrazidlo, Dominik","roleDisplay":"VerfasserIn","role":"aut","family":"Wrazidlo","given":"Dominik"}],"title":[{"title":"The uniqueness theorem for Gysin coherent characteristic classes of singular spaces","title_sort":"uniqueness theorem for Gysin coherent characteristic classes of singular spaces"}],"relHost":[{"title":[{"title":"Journal of the London Mathematical Society","title_sort":"Journal of the London Mathematical Society"}],"note":["Gesehen am 16.08.17"],"disp":"London Mathematical SocietyJournal of the London Mathematical Society","type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"270126953","corporate":[{"display":"London Mathematical Society","roleDisplay":"VerfasserIn","role":"aut"}],"language":["eng"],"pubHistory":["1.1926 -"],"part":{"year":"2023","pages":"1-45","text":"(2023), online ahead of print","extent":"45"},"origin":[{"dateIssuedKey":"1926","publisher":"Wiley ; Cambridge Univ. Press ; Oxford University Press","dateIssuedDisp":"1926-","publisherPlace":"Oxford ; Cambridge ; Oxford"}],"id":{"issn":["1469-7750"],"zdb":["1476428-3"],"doi":["10.1112/(ISSN)1469-7750"],"eki":["270126953"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"45 S.","noteIll":"Illustrationen"}],"name":{"displayForm":["Markus Banagl, Dominik J. Wrazidlo"]},"id":{"eki":["1876202068"],"doi":["10.1112/jlms.12823"]},"origin":[{"dateIssuedDisp":"13 October 2023","dateIssuedKey":"2023"}]} | ||
| SRT | |a BANAGLMARKUNIQUENESS1320 | ||