nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation

Biomedical imaging is a driver of scientific discovery and a core component of medical care and is being stimulated by the field of deep learning. While semantic segmentation algorithms enable image analysis and quantification in many applications, the design of respective specialized solutions is n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Isensee, Fabian (VerfasserIn) , Jaeger, Paul F. (VerfasserIn) , Kohl, Simon (VerfasserIn) , Petersen, Jens (VerfasserIn) , Maier-Hein, Klaus H. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2021
In: Nature methods
Year: 2021, Jahrgang: 18, Heft: 2, Pages: 203-211
ISSN:1548-7105
DOI:10.1038/s41592-020-01008-z
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s41592-020-01008-z
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s41592-020-01008-z
Volltext
Verfasserangaben:Fabian Isensee, Paul F. Jaeger, Simon A.A. Kohl, Jens Petersen and Klaus H. Maier-Hein

MARC

LEADER 00000caa a2200000 c 4500
001 1876308516
003 DE-627
005 20240307091822.0
007 cr uuu---uuuuu
008 231218s2021 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41592-020-01008-z  |2 doi 
035 |a (DE-627)1876308516 
035 |a (DE-599)KXP1876308516 
035 |a (OCoLC)1425217679 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Isensee, Fabian  |d 1990-  |e VerfasserIn  |0 (DE-588)1207568430  |0 (DE-627)1694044998  |4 aut 
245 1 0 |a nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation  |c Fabian Isensee, Paul F. Jaeger, Simon A.A. Kohl, Jens Petersen and Klaus H. Maier-Hein 
264 1 |c 2021 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 18.12.2023 
520 |a Biomedical imaging is a driver of scientific discovery and a core component of medical care and is being stimulated by the field of deep learning. While semantic segmentation algorithms enable image analysis and quantification in many applications, the design of respective specialized solutions is non-trivial and highly dependent on dataset properties and hardware conditions. We developed nnU-Net, a deep learning-based segmentation method that automatically configures itself, including preprocessing, network architecture, training and post-processing for any new task. The key design choices in this process are modeled as a set of fixed parameters, interdependent rules and empirical decisions. Without manual intervention, nnU-Net surpasses most existing approaches, including highly specialized solutions on 23 public datasets used in international biomedical segmentation competitions. We make nnU-Net publicly available as an out-of-the-box tool, rendering state-of-the-art segmentation accessible to a broad audience by requiring neither expert knowledge nor computing resources beyond standard network training. 
650 4 |a Image processing 
650 4 |a Translational research 
700 1 |a Jaeger, Paul F.  |e VerfasserIn  |0 (DE-588)1278497218  |0 (DE-627)1831414333  |4 aut 
700 1 |a Kohl, Simon  |e VerfasserIn  |0 (DE-588)1202722644  |0 (DE-627)1687171300  |4 aut 
700 1 |a Petersen, Jens  |d 1988-  |e VerfasserIn  |0 (DE-588)1197162348  |0 (DE-627)1678966665  |4 aut 
700 1 |a Maier-Hein, Klaus H.  |d 1980-  |e VerfasserIn  |0 (DE-588)1100551875  |0 (DE-627)85946461X  |0 (DE-576)333771222  |4 aut 
773 0 8 |i Enthalten in  |t Nature methods  |d London [u.a.] : Nature Publishing Group, 2004  |g 18(2021), 2, Seite 203-211  |h Online-Ressource  |w (DE-627)397615310  |w (DE-600)2163081-1  |w (DE-576)118489089  |x 1548-7105  |7 nnas  |a nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation 
773 1 8 |g volume:18  |g year:2021  |g number:2  |g pages:203-211  |g extent:9  |a nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation 
856 4 0 |u https://doi.org/10.1038/s41592-020-01008-z  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41592-020-01008-z  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20231218 
993 |a Article 
994 |a 2021 
998 |g 1100551875  |a Maier-Hein, Klaus H.  |m 1100551875:Maier-Hein, Klaus H.  |d 50000  |e 50000PM1100551875  |k 0/50000/  |p 5  |y j 
999 |a KXP-PPN1876308516  |e 4440083188 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 18.12.2023"],"id":{"doi":["10.1038/s41592-020-01008-z"],"eki":["1876308516"]},"language":["eng"],"origin":[{"dateIssuedDisp":"2021","dateIssuedKey":"2021"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"pubHistory":["1.2004 -"],"disp":"nnU-Net: a self-configuring method for deep learning-based biomedical image segmentationNature methods","origin":[{"dateIssuedKey":"2004","dateIssuedDisp":"2004-","publisherPlace":"London [u.a.]","publisher":"Nature Publishing Group"}],"id":{"issn":["1548-7105"],"eki":["397615310"],"zdb":["2163081-1"]},"language":["eng"],"note":["Gesehen am 14. August 2018"],"physDesc":[{"extent":"Online-Ressource"}],"part":{"year":"2021","text":"18(2021), 2, Seite 203-211","volume":"18","extent":"9","issue":"2","pages":"203-211"},"recId":"397615310","title":[{"title_sort":"Nature methods","title":"Nature methods","subtitle":"techniques for life scientists and chemists"}]}],"title":[{"title_sort":"nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation","title":"nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation"}],"person":[{"family":"Isensee","given":"Fabian","role":"aut","display":"Isensee, Fabian"},{"role":"aut","display":"Jaeger, Paul F.","family":"Jaeger","given":"Paul F."},{"role":"aut","display":"Kohl, Simon","family":"Kohl","given":"Simon"},{"display":"Petersen, Jens","role":"aut","family":"Petersen","given":"Jens"},{"family":"Maier-Hein","given":"Klaus H.","role":"aut","display":"Maier-Hein, Klaus H."}],"physDesc":[{"extent":"9 S."}],"name":{"displayForm":["Fabian Isensee, Paul F. Jaeger, Simon A.A. Kohl, Jens Petersen and Klaus H. Maier-Hein"]},"recId":"1876308516"} 
SRT |a ISENSEEFABNNUNETASEL2021