nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
Biomedical imaging is a driver of scientific discovery and a core component of medical care and is being stimulated by the field of deep learning. While semantic segmentation algorithms enable image analysis and quantification in many applications, the design of respective specialized solutions is n...
Gespeichert in:
| Hauptverfasser: | , , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2021
|
| In: |
Nature methods
Year: 2021, Jahrgang: 18, Heft: 2, Pages: 203-211 |
| ISSN: | 1548-7105 |
| DOI: | 10.1038/s41592-020-01008-z |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s41592-020-01008-z Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s41592-020-01008-z |
| Verfasserangaben: | Fabian Isensee, Paul F. Jaeger, Simon A.A. Kohl, Jens Petersen and Klaus H. Maier-Hein |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1876308516 | ||
| 003 | DE-627 | ||
| 005 | 20240307091822.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 231218s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1038/s41592-020-01008-z |2 doi | |
| 035 | |a (DE-627)1876308516 | ||
| 035 | |a (DE-599)KXP1876308516 | ||
| 035 | |a (OCoLC)1425217679 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Isensee, Fabian |d 1990- |e VerfasserIn |0 (DE-588)1207568430 |0 (DE-627)1694044998 |4 aut | |
| 245 | 1 | 0 | |a nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation |c Fabian Isensee, Paul F. Jaeger, Simon A.A. Kohl, Jens Petersen and Klaus H. Maier-Hein |
| 264 | 1 | |c 2021 | |
| 300 | |a 9 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 18.12.2023 | ||
| 520 | |a Biomedical imaging is a driver of scientific discovery and a core component of medical care and is being stimulated by the field of deep learning. While semantic segmentation algorithms enable image analysis and quantification in many applications, the design of respective specialized solutions is non-trivial and highly dependent on dataset properties and hardware conditions. We developed nnU-Net, a deep learning-based segmentation method that automatically configures itself, including preprocessing, network architecture, training and post-processing for any new task. The key design choices in this process are modeled as a set of fixed parameters, interdependent rules and empirical decisions. Without manual intervention, nnU-Net surpasses most existing approaches, including highly specialized solutions on 23 public datasets used in international biomedical segmentation competitions. We make nnU-Net publicly available as an out-of-the-box tool, rendering state-of-the-art segmentation accessible to a broad audience by requiring neither expert knowledge nor computing resources beyond standard network training. | ||
| 650 | 4 | |a Image processing | |
| 650 | 4 | |a Translational research | |
| 700 | 1 | |a Jaeger, Paul F. |e VerfasserIn |0 (DE-588)1278497218 |0 (DE-627)1831414333 |4 aut | |
| 700 | 1 | |a Kohl, Simon |e VerfasserIn |0 (DE-588)1202722644 |0 (DE-627)1687171300 |4 aut | |
| 700 | 1 | |a Petersen, Jens |d 1988- |e VerfasserIn |0 (DE-588)1197162348 |0 (DE-627)1678966665 |4 aut | |
| 700 | 1 | |a Maier-Hein, Klaus H. |d 1980- |e VerfasserIn |0 (DE-588)1100551875 |0 (DE-627)85946461X |0 (DE-576)333771222 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Nature methods |d London [u.a.] : Nature Publishing Group, 2004 |g 18(2021), 2, Seite 203-211 |h Online-Ressource |w (DE-627)397615310 |w (DE-600)2163081-1 |w (DE-576)118489089 |x 1548-7105 |7 nnas |a nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation |
| 773 | 1 | 8 | |g volume:18 |g year:2021 |g number:2 |g pages:203-211 |g extent:9 |a nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation |
| 856 | 4 | 0 | |u https://doi.org/10.1038/s41592-020-01008-z |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.nature.com/articles/s41592-020-01008-z |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20231218 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1100551875 |a Maier-Hein, Klaus H. |m 1100551875:Maier-Hein, Klaus H. |d 50000 |e 50000PM1100551875 |k 0/50000/ |p 5 |y j | ||
| 999 | |a KXP-PPN1876308516 |e 4440083188 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"note":["Gesehen am 18.12.2023"],"id":{"doi":["10.1038/s41592-020-01008-z"],"eki":["1876308516"]},"language":["eng"],"origin":[{"dateIssuedDisp":"2021","dateIssuedKey":"2021"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"pubHistory":["1.2004 -"],"disp":"nnU-Net: a self-configuring method for deep learning-based biomedical image segmentationNature methods","origin":[{"dateIssuedKey":"2004","dateIssuedDisp":"2004-","publisherPlace":"London [u.a.]","publisher":"Nature Publishing Group"}],"id":{"issn":["1548-7105"],"eki":["397615310"],"zdb":["2163081-1"]},"language":["eng"],"note":["Gesehen am 14. August 2018"],"physDesc":[{"extent":"Online-Ressource"}],"part":{"year":"2021","text":"18(2021), 2, Seite 203-211","volume":"18","extent":"9","issue":"2","pages":"203-211"},"recId":"397615310","title":[{"title_sort":"Nature methods","title":"Nature methods","subtitle":"techniques for life scientists and chemists"}]}],"title":[{"title_sort":"nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation","title":"nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation"}],"person":[{"family":"Isensee","given":"Fabian","role":"aut","display":"Isensee, Fabian"},{"role":"aut","display":"Jaeger, Paul F.","family":"Jaeger","given":"Paul F."},{"role":"aut","display":"Kohl, Simon","family":"Kohl","given":"Simon"},{"display":"Petersen, Jens","role":"aut","family":"Petersen","given":"Jens"},{"family":"Maier-Hein","given":"Klaus H.","role":"aut","display":"Maier-Hein, Klaus H."}],"physDesc":[{"extent":"9 S."}],"name":{"displayForm":["Fabian Isensee, Paul F. Jaeger, Simon A.A. Kohl, Jens Petersen and Klaus H. Maier-Hein"]},"recId":"1876308516"} | ||
| SRT | |a ISENSEEFABNNUNETASEL2021 | ||