KineticNet: deep learning a transferable kinetic energy functional for orbital-free density functional theory

Orbital-free density functional theory (OF-DFT) holds promise to compute ground state molecular properties at minimal cost. However, it has been held back by our inability to compute the kinetic energy as a functional of electron density alone. Here, we set out to learn the kinetic energy functional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Remme, Roman (VerfasserIn) , Kaczun, Tobias (VerfasserIn) , Scheurer, Maximilian (VerfasserIn) , Dreuw, Andreas (VerfasserIn) , Hamprecht, Fred (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 13 October 2023
In: The journal of chemical physics
Year: 2023, Jahrgang: 159, Heft: 14, Pages: [1], 1-13
ISSN:1089-7690
DOI:10.1063/5.0158275
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1063/5.0158275
Verlag, lizenzpflichtig, Volltext: https://pubs.aip.org/aip/jcp/article/159/14/144113/2916356
Volltext
Verfasserangaben:R. Remme, T. Kaczun, M. Scheurer, A. Dreuw and F.A. Hamprecht

MARC

LEADER 00000caa a2200000 c 4500
001 1876922923
003 DE-627
005 20240307031945.0
007 cr uuu---uuuuu
008 231222s2023 xx |||||o 00| ||eng c
024 7 |a 10.1063/5.0158275  |2 doi 
035 |a (DE-627)1876922923 
035 |a (DE-599)KXP1876922923 
035 |a (OCoLC)1425208043 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Remme, Roman  |d 1996-  |e VerfasserIn  |0 (DE-588)1226781462  |0 (DE-627)174780827X  |4 aut 
245 1 0 |a KineticNet  |b deep learning a transferable kinetic energy functional for orbital-free density functional theory  |c R. Remme, T. Kaczun, M. Scheurer, A. Dreuw and F.A. Hamprecht 
264 1 |c 13 October 2023 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 22.12.2023 
520 |a Orbital-free density functional theory (OF-DFT) holds promise to compute ground state molecular properties at minimal cost. However, it has been held back by our inability to compute the kinetic energy as a functional of electron density alone. Here, we set out to learn the kinetic energy functional from ground truth provided by the more expensive Kohn-Sham density functional theory. Such learning is confronted with two key challenges: Giving the model sufficient expressivity and spatial context while limiting the memory footprint to afford computations on a GPU and creating a sufficiently broad distribution of training data to enable iterative density optimization even when starting from a poor initial guess. In response, we introduce KineticNet, an equivariant deep neural network architecture based on point convolutions adapted to the prediction of quantities on molecular quadrature grids. Important contributions include convolution filters with sufficient spatial resolution in the vicinity of nuclear cusp, an atom-centric sparse but expressive architecture that relays information across multiple bond lengths, and a new strategy to generate varied training data by finding ground state densities in the face of perturbations by a random external potential. KineticNet achieves, for the first time, chemical accuracy of the learned functionals across input densities and geometries of tiny molecules. For two-electron systems, we additionally demonstrate OF-DFT density optimization with chemical accuracy. 
700 1 |a Kaczun, Tobias  |e VerfasserIn  |0 (DE-588)1314532952  |0 (DE-627)1876923156  |4 aut 
700 1 |a Scheurer, Maximilian  |d 1994-  |e VerfasserIn  |0 (DE-588)1157021441  |0 (DE-627)1020013451  |0 (DE-576)502574127  |4 aut 
700 1 |a Dreuw, Andreas  |d 1972-  |e VerfasserIn  |0 (DE-588)1060214598  |0 (DE-627)799305626  |0 (DE-576)416304974  |4 aut 
700 1 |a Hamprecht, Fred  |e VerfasserIn  |0 (DE-588)1020505605  |0 (DE-627)691240280  |0 (DE-576)360605516  |4 aut 
773 0 8 |i Enthalten in  |t The journal of chemical physics  |d Melville, NY : American Institute of Physics, 1933  |g 159(2023), 14, Artikel-ID 144113, Seite [1], 1-13  |h Online-Ressource  |w (DE-627)268760675  |w (DE-600)1473050-9  |w (DE-576)077610261  |x 1089-7690  |7 nnas  |a KineticNet deep learning a transferable kinetic energy functional for orbital-free density functional theory 
773 1 8 |g volume:159  |g year:2023  |g number:14  |g elocationid:144113  |g pages:[1], 1-13  |g extent:14  |a KineticNet deep learning a transferable kinetic energy functional for orbital-free density functional theory 
856 4 0 |u https://doi.org/10.1063/5.0158275  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://pubs.aip.org/aip/jcp/article/159/14/144113/2916356  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20231222 
993 |a Article 
994 |a 2023 
998 |g 1020505605  |a Hamprecht, Fred  |m 1020505605:Hamprecht, Fred  |d 700000  |d 708070  |e 700000PH1020505605  |e 708070PH1020505605  |k 0/700000/  |k 1/700000/708070/  |p 5  |y j 
998 |g 1060214598  |a Dreuw, Andreas  |m 1060214598:Dreuw, Andreas  |d 700000  |d 708000  |e 700000PD1060214598  |e 708000PD1060214598  |k 0/700000/  |k 1/700000/708000/  |p 4 
998 |g 1157021441  |a Scheurer, Maximilian  |m 1157021441:Scheurer, Maximilian  |d 110000  |e 110000PS1157021441  |k 0/110000/  |p 3 
998 |g 1314532952  |a Kaczun, Tobias  |m 1314532952:Kaczun, Tobias  |d 500000  |d 501249  |e 500000PK1314532952  |e 501249PK1314532952  |k 0/500000/  |k 1/500000/501249/  |p 2 
998 |g 1226781462  |a Remme, Roman  |m 1226781462:Remme, Roman  |d 700000  |d 708000  |e 700000PR1226781462  |e 708000PR1226781462  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN1876922923  |e 4443175148 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["R. Remme, T. Kaczun, M. Scheurer, A. Dreuw and F.A. Hamprecht"]},"language":["eng"],"note":["Gesehen am 22.12.2023"],"recId":"1876922923","person":[{"display":"Remme, Roman","given":"Roman","role":"aut","family":"Remme"},{"family":"Kaczun","role":"aut","display":"Kaczun, Tobias","given":"Tobias"},{"display":"Scheurer, Maximilian","given":"Maximilian","family":"Scheurer","role":"aut"},{"given":"Andreas","display":"Dreuw, Andreas","family":"Dreuw","role":"aut"},{"role":"aut","family":"Hamprecht","display":"Hamprecht, Fred","given":"Fred"}],"physDesc":[{"extent":"14 S."}],"id":{"eki":["1876922923"],"doi":["10.1063/5.0158275"]},"title":[{"title_sort":"KineticNet","subtitle":"deep learning a transferable kinetic energy functional for orbital-free density functional theory","title":"KineticNet"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"origin":[{"dateIssuedDisp":"13 October 2023","dateIssuedKey":"2023"}],"relHost":[{"name":{"displayForm":["American Institute of Physics"]},"recId":"268760675","id":{"zdb":["1473050-9"],"issn":["1089-7690"],"eki":["268760675"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"subtitle":"bridges a gap between journals of physics and journals of chemistry","title":"The journal of chemical physics","title_sort":"journal of chemical physics"}],"origin":[{"publisherPlace":"Melville, NY","dateIssuedKey":"1933","dateIssuedDisp":"1933-","publisher":"American Institute of Physics"}],"part":{"year":"2023","volume":"159","text":"159(2023), 14, Artikel-ID 144113, Seite [1], 1-13","extent":"14","pages":"[1], 1-13","issue":"14"},"language":["eng"],"pubHistory":["1.1933 -"],"note":["Gesehen am 16.06.2023"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"KineticNet deep learning a transferable kinetic energy functional for orbital-free density functional theoryThe journal of chemical physics"}]} 
SRT |a REMMEROMANKINETICNET1320