Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields
Let K be a finite extension of the p-adic field Q𝑝 of degree d, let F be a finite field of characteristic p and let 𝐷 be an n-dimensional pseudocharacter in the sense of Chenevier of the absolute Galois group of K over the field F. For the universal mod p pseudodeformation ring 𝑅univ 𝐷 of 𝐷, we prov...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
17 November 2023
|
| In: |
Forum of mathematics. Sigma
Year: 2023, Jahrgang: 11, Pages: 1-83 |
| ISSN: | 2050-5094 |
| DOI: | 10.1017/fms.2023.82 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1017/fms.2023.82 Verlag, kostenfrei, Volltext: https://www.cambridge.org/core/journals/forum-of-mathematics-sigma/article/equidimensionality-of-universal-pseudodeformation-rings-in-characteristic-p-for-absolute-galois-groups-of-padic-fields/E29626E5A2A247CD54CB5C98F6AB21A5 |
| Verfasserangaben: | Gebhard Böckle and Ann-Kristin Juschka |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1877613703 | ||
| 003 | DE-627 | ||
| 005 | 20240712144057.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 240110s2023 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1017/fms.2023.82 |2 doi | |
| 035 | |a (DE-627)1877613703 | ||
| 035 | |a (DE-599)KXP1877613703 | ||
| 035 | |a (OCoLC)1425207905 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Böckle, Gebhard |d 1964- |e VerfasserIn |0 (DE-588)1052651798 |0 (DE-627)788915908 |0 (DE-576)408431660 |4 aut | |
| 245 | 1 | 0 | |a Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields |c Gebhard Böckle and Ann-Kristin Juschka |
| 264 | 1 | |c 17 November 2023 | |
| 300 | |a 83 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 10.01.2024 | ||
| 520 | |a Let K be a finite extension of the p-adic field Q of degree d, let F be a finite field of characteristic p and let be an n-dimensional pseudocharacter in the sense of Chenevier of the absolute Galois group of K over the field F. For the universal mod p pseudodeformation ring univ of , we prove the following: The ring ps is equidimensional of dimension 2 + 1. Its reduced quotient univ ,red contains a dense open subset of regular points x whose associated pseudocharacter is absolutely irreducible and nonspecial in a certain technical sense that we shall define. Moreover, we will characterize in most cases when K does not contain a p-th root of unity the singular locus of Spec univ . Similar results were proved by Chenevier for the generic fiber of the universal pseudodeformation ring univ of . | ||
| 650 | 4 | |a 11F70 | |
| 650 | 4 | |a 11F80 | |
| 650 | 4 | |a 11F85 | |
| 700 | 1 | |a Juschka, Ann-Kristin |d 1984- |e VerfasserIn |0 (DE-588)1113301198 |0 (DE-627)867165413 |0 (DE-576)476942101 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Forum of mathematics. Sigma |d Cambridge : Cambridge Univ. Press, 2013 |g 11(2023), Artikel-ID e102, Seite 1-83 |h Online-Ressource |w (DE-627)751861081 |w (DE-600)2723154-9 |w (DE-576)390372471 |x 2050-5094 |7 nnas |a Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields |
| 773 | 1 | 8 | |g volume:11 |g year:2023 |g elocationid:e102 |g pages:1-83 |g extent:83 |a Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields |
| 856 | 4 | 0 | |u https://doi.org/10.1017/fms.2023.82 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://www.cambridge.org/core/journals/forum-of-mathematics-sigma/article/equidimensionality-of-universal-pseudodeformation-rings-in-characteristic-p-for-absolute-galois-groups-of-padic-fields/E29626E5A2A247CD54CB5C98F6AB21A5 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20240110 | ||
| 993 | |a Article | ||
| 994 | |a 2023 | ||
| 998 | |g 1052651798 |a Böckle, Gebhard |m 1052651798:Böckle, Gebhard |d 110000 |d 110400 |e 110000PB1052651798 |e 110400PB1052651798 |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN1877613703 |e 4452833608 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"note":["Gesehen am 10.01.2024"],"physDesc":[{"extent":"83 S."}],"person":[{"family":"Böckle","given":"Gebhard","display":"Böckle, Gebhard","role":"aut","roleDisplay":"VerfasserIn"},{"roleDisplay":"VerfasserIn","display":"Juschka, Ann-Kristin","role":"aut","given":"Ann-Kristin","family":"Juschka"}],"name":{"displayForm":["Gebhard Böckle and Ann-Kristin Juschka"]},"recId":"1877613703","id":{"doi":["10.1017/fms.2023.82"],"eki":["1877613703"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"relHost":[{"note":["Gesehen am 22.04.2024"],"pubHistory":["1.2013 -"],"physDesc":[{"extent":"Online-Ressource"}],"recId":"751861081","id":{"issn":["2050-5094"],"zdb":["2723154-9"],"eki":["751861081"]},"type":{"bibl":"periodical","media":"Online-Ressource"},"origin":[{"dateIssuedDisp":"2013-","publisherPlace":"Cambridge","dateIssuedKey":"2013","publisher":"Cambridge Univ. Press"}],"titleAlt":[{"title":"Forum of mathematics / Sigma"}],"title":[{"title":"Forum of mathematics","title_sort":"Forum of mathematics","partname":"Sigma"}],"language":["eng"],"disp":"Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fieldsForum of mathematics. Sigma","part":{"year":"2023","text":"11(2023), Artikel-ID e102, Seite 1-83","extent":"83","volume":"11","pages":"1-83"}}],"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"17 November 2023"}],"title":[{"title_sort":"Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields","title":"Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields"}],"language":["eng"]} | ||
| SRT | |a BOECKLEGEBEQUIDIMENS1720 | ||