Anosov representations with Lipschitz limit set
We study Anosov representations whose limit set has intermediate regularity, namely is a Lipschitz submanifold of a flag manifold. We introduce an explicit linear functional, the unstable Jacobian, whose orbit growth rate is integral on this class of representations. We prove that many interesting h...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
9 November 2023
|
| In: |
Geometry & topology
Year: 2023, Jahrgang: 27, Heft: 8, Pages: 3303-3360 |
| ISSN: | 1364-0380 |
| DOI: | 10.2140/gt.2023.27.3303 |
| Online-Zugang: | Resolving-System, kostenfrei, Volltext: https://doi.org/10.2140/gt.2023.27.3303 Verlag, kostenfrei, Volltext: https://msp.org/gt/2023/27-8/p06.xhtml |
| Verfasserangaben: | Maria Beatrice Pozzetti, Andrés Sambarino, Anna Wienhard |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1877628247 | ||
| 003 | DE-627 | ||
| 005 | 20240307031357.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 240110s2023 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.2140/gt.2023.27.3303 |2 doi | |
| 035 | |a (DE-627)1877628247 | ||
| 035 | |a (DE-599)KXP1877628247 | ||
| 035 | |a (OCoLC)1425207940 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Pozzetti, Maria Beatrice |d 1987- |e VerfasserIn |0 (DE-588)1138212202 |0 (DE-627)895519631 |0 (DE-576)492391424 |4 aut | |
| 245 | 1 | 0 | |a Anosov representations with Lipschitz limit set |c Maria Beatrice Pozzetti, Andrés Sambarino, Anna Wienhard |
| 264 | 1 | |c 9 November 2023 | |
| 300 | |a 58 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 10.01.2024 | ||
| 520 | |a We study Anosov representations whose limit set has intermediate regularity, namely is a Lipschitz submanifold of a flag manifold. We introduce an explicit linear functional, the unstable Jacobian, whose orbit growth rate is integral on this class of representations. We prove that many interesting higher-rank representations, including Θ-positive representations, belong to this class, and establish several applications to rigidity results on the orbit growth rate in the symmetric space. | ||
| 700 | 1 | |a Sambarino, Andrés |d 1984- |e VerfasserIn |0 (DE-588)1177719940 |0 (DE-627)1048874028 |0 (DE-576)517446383 |4 aut | |
| 700 | 1 | |a Wienhard, Anna |d 1977- |e VerfasserIn |0 (DE-588)137817975 |0 (DE-627)696086891 |0 (DE-576)305331280 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Geometry & topology |d Berkeley, Calif. : Mathematical Sciences Publishers, 1997 |g 27(2023), 8, Seite 3303-3360 |h Online-Ressource |w (DE-627)240133927 |w (DE-600)1411579-7 |w (DE-576)117398802 |x 1364-0380 |7 nnas |a Anosov representations with Lipschitz limit set |
| 773 | 1 | 8 | |g volume:27 |g year:2023 |g number:8 |g pages:3303-3360 |g extent:58 |a Anosov representations with Lipschitz limit set |
| 856 | 4 | 0 | |u https://doi.org/10.2140/gt.2023.27.3303 |x Resolving-System |x Verlag |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://msp.org/gt/2023/27-8/p06.xhtml |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20240110 | ||
| 993 | |a Article | ||
| 994 | |a 2023 | ||
| 998 | |g 137817975 |a Wienhard, Anna |m 137817975:Wienhard, Anna |d 110000 |d 110400 |d 700000 |d 728500 |e 110000PW137817975 |e 110400PW137817975 |e 700000PW137817975 |e 728500PW137817975 |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/728500/ |p 3 |y j | ||
| 998 | |g 1138212202 |a Pozzetti, Maria Beatrice |m 1138212202:Pozzetti, Maria Beatrice |d 110000 |d 110400 |d 700000 |d 728500 |e 110000PP1138212202 |e 110400PP1138212202 |e 700000PP1138212202 |e 728500PP1138212202 |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/728500/ |p 1 |x j | ||
| 999 | |a KXP-PPN1877628247 |e 4452912672 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"title":[{"title":"Anosov representations with Lipschitz limit set","title_sort":"Anosov representations with Lipschitz limit set"}],"relHost":[{"recId":"240133927","titleAlt":[{"title":"Geometry and topology"},{"title":"GT"}],"id":{"eki":["240133927"],"issn":["1364-0380"],"zdb":["1411579-7"]},"language":["eng"],"disp":"Anosov representations with Lipschitz limit setGeometry & topology","title":[{"title_sort":"Geometry & topology","subtitle":"GT","title":"Geometry & topology"}],"part":{"issue":"8","pages":"3303-3360","year":"2023","volume":"27","text":"27(2023), 8, Seite 3303-3360","extent":"58"},"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["1.1997 -"],"note":["Gesehen am 13.06.2023"],"type":{"bibl":"periodical","media":"Online-Ressource"},"origin":[{"publisher":"Mathematical Sciences Publishers","publisherPlace":"Berkeley, Calif.","dateIssuedKey":"1997","dateIssuedDisp":"1997-"}],"name":{"displayForm":["Mathematics Institute, University of Warwick"]}}],"physDesc":[{"extent":"58 S."}],"origin":[{"dateIssuedDisp":"9 November 2023","dateIssuedKey":"2023"}],"note":["Gesehen am 10.01.2024"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"name":{"displayForm":["Maria Beatrice Pozzetti, Andrés Sambarino, Anna Wienhard"]},"recId":"1877628247","person":[{"roleDisplay":"VerfasserIn","given":"Maria Beatrice","display":"Pozzetti, Maria Beatrice","family":"Pozzetti","role":"aut"},{"family":"Sambarino","role":"aut","given":"Andrés","roleDisplay":"VerfasserIn","display":"Sambarino, Andrés"},{"family":"Wienhard","role":"aut","roleDisplay":"VerfasserIn","given":"Anna","display":"Wienhard, Anna"}],"id":{"doi":["10.2140/gt.2023.27.3303"],"eki":["1877628247"]},"language":["eng"]} | ||
| SRT | |a POZZETTIMAANOSOVREPR9202 | ||