Anosov representations with Lipschitz limit set

We study Anosov representations whose limit set has intermediate regularity, namely is a Lipschitz submanifold of a flag manifold. We introduce an explicit linear functional, the unstable Jacobian, whose orbit growth rate is integral on this class of representations. We prove that many interesting h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pozzetti, Maria Beatrice (VerfasserIn) , Sambarino, Andrés (VerfasserIn) , Wienhard, Anna (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 9 November 2023
In: Geometry & topology
Year: 2023, Jahrgang: 27, Heft: 8, Pages: 3303-3360
ISSN:1364-0380
DOI:10.2140/gt.2023.27.3303
Online-Zugang:Resolving-System, kostenfrei, Volltext: https://doi.org/10.2140/gt.2023.27.3303
Verlag, kostenfrei, Volltext: https://msp.org/gt/2023/27-8/p06.xhtml
Volltext
Verfasserangaben:Maria Beatrice Pozzetti, Andrés Sambarino, Anna Wienhard
Beschreibung
Zusammenfassung:We study Anosov representations whose limit set has intermediate regularity, namely is a Lipschitz submanifold of a flag manifold. We introduce an explicit linear functional, the unstable Jacobian, whose orbit growth rate is integral on this class of representations. We prove that many interesting higher-rank representations, including Θ-positive representations, belong to this class, and establish several applications to rigidity results on the orbit growth rate in the symmetric space.
Beschreibung:Gesehen am 10.01.2024
Beschreibung:Online Resource
ISSN:1364-0380
DOI:10.2140/gt.2023.27.3303