Generation of synthetic EEG data for training algorithms supporting the diagnosis of major depressive disorder

Introduction: Major depressive disorder (MDD) is the most common mental disorder worldwide, leading to impairment in quality and independence of life. Electroencephalography (EEG) biomarkers processed with machine learning (ML) algorithms have been explored for objective diagnoses with promising res...

Full description

Saved in:
Bibliographic Details
Main Authors: Carrle, Friedrich Philipp (Author) , Hollenbenders, Yasmin (Author) , Reichenbach, Alexandra (Author)
Format: Article (Journal)
Language:English
Published: 02 October 2023
In: Frontiers in neuroscience
Year: 2023, Volume: 17, Pages: 1-17
ISSN:1662-453X
DOI:10.3389/fnins.2023.1219133
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.3389/fnins.2023.1219133
Verlag, kostenfrei, Volltext: https://www.frontiersin.org/articles/10.3389/fnins.2023.1219133
Get full text
Author Notes:Friedrich Philipp Carrle, Yasmin Hollenbenders and Alexandra Reichenbach

MARC

LEADER 00000caa a2200000 c 4500
001 187820341X
003 DE-627
005 20240307031039.0
007 cr uuu---uuuuu
008 240116s2023 xx |||||o 00| ||eng c
024 7 |a 10.3389/fnins.2023.1219133  |2 doi 
035 |a (DE-627)187820341X 
035 |a (DE-599)KXP187820341X 
035 |a (OCoLC)1425207903 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Carrle, Friedrich Philipp  |e VerfasserIn  |0 (DE-588)1316134830  |0 (DE-627)1878217682  |4 aut 
245 1 0 |a Generation of synthetic EEG data for training algorithms supporting the diagnosis of major depressive disorder  |c Friedrich Philipp Carrle, Yasmin Hollenbenders and Alexandra Reichenbach 
264 1 |c 02 October 2023 
300 |a 17 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 16.01.2024 
520 |a Introduction: Major depressive disorder (MDD) is the most common mental disorder worldwide, leading to impairment in quality and independence of life. Electroencephalography (EEG) biomarkers processed with machine learning (ML) algorithms have been explored for objective diagnoses with promising results. However, the generalizability of those models, a prerequisite for clinical application, is restricted by small datasets. One approach to train ML models with good generalizability is complementing the original with synthetic data produced by generative algorithms. Another advantage of synthetic data is the possibility of publishing the data for other researchers without risking patient data privacy. Synthetic EEG time-series have not yet been generated for two clinical populations like MDD patients and healthy controls. Methods: We first reviewed 27 studies presenting EEG data augmentation with generative algorithms for classification tasks, like diagnosis, for the possibilities and shortcomings of recent methods. The subsequent empirical study generated EEG time-series based on two public datasets with 30/28 and 24/29 subjects (MDD/controls). To obtain baseline diagnostic accuracies, convolutional neural networks (CNN) were trained with time-series from each dataset. The data were synthesized with generative adversarial networks (GAN) consisting of CNNs. We evaluated the synthetic data qualitatively and quantitatively and finally used it for re-training the diagnostic model. Results: The reviewed studies improved their classification accuracies by between 1 and 40% with the synthetic data. Our own diagnostic accuracy improved up to 10% for one dataset but not significantly for the other. We found a rich repertoire of generative models in the reviewed literature, solving various technical issues. A major shortcoming in the field is the lack of meaningful evaluation metrics for synthetic data. The few studies analyzing the data in the frequency domain, including our own, show that only some features can be produced truthfully. Discussion: The systematic review combined with our own investigation provides an overview of the available methods for generating EEG data for a classification task, their possibilities, and shortcomings. The approach is promising and the technical basis is set. For a broad application of these techniques in neuroscience research or clinical application, the methods need fine-tuning facilitated by domain expertise in (clinical) EEG research. 
700 1 |a Hollenbenders, Yasmin  |e VerfasserIn  |0 (DE-588)1292503866  |0 (DE-627)1848504950  |4 aut 
700 1 |a Reichenbach, Alexandra  |e VerfasserIn  |0 (DE-588)1292504420  |0 (DE-627)1848505396  |4 aut 
773 0 8 |i Enthalten in  |t Frontiers in neuroscience  |d Lausanne : Frontiers Research Foundation, 2007  |g 17(2023), Artikel-ID 1219133, Seite 1-17  |h Online-Ressource  |w (DE-627)55908109X  |w (DE-600)2411902-7  |w (DE-576)281378959  |x 1662-453X  |7 nnas  |a Generation of synthetic EEG data for training algorithms supporting the diagnosis of major depressive disorder 
773 1 8 |g volume:17  |g year:2023  |g elocationid:1219133  |g pages:1-17  |g extent:17  |a Generation of synthetic EEG data for training algorithms supporting the diagnosis of major depressive disorder 
856 4 0 |u https://doi.org/10.3389/fnins.2023.1219133  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.frontiersin.org/articles/10.3389/fnins.2023.1219133  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20240116 
993 |a Article 
994 |a 2023 
998 |g 1292504420  |a Reichenbach, Alexandra  |m 1292504420:Reichenbach, Alexandra  |d 140000  |e 140000PR1292504420  |k 0/140000/  |p 3  |y j 
998 |g 1292503866  |a Hollenbenders, Yasmin  |m 1292503866:Hollenbenders, Yasmin  |p 2 
998 |g 1316134830  |a Carrle, Friedrich Philipp  |m 1316134830:Carrle, Friedrich Philipp  |p 1  |x j 
999 |a KXP-PPN187820341X  |e 4459745488 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"17 S."}],"relHost":[{"title":[{"title_sort":"Frontiers in neuroscience","title":"Frontiers in neuroscience"}],"pubHistory":["1.2007 -"],"part":{"volume":"17","text":"17(2023), Artikel-ID 1219133, Seite 1-17","extent":"17","year":"2023","pages":"1-17"},"disp":"Generation of synthetic EEG data for training algorithms supporting the diagnosis of major depressive disorderFrontiers in neuroscience","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 04.06.20"],"language":["eng"],"recId":"55908109X","origin":[{"dateIssuedDisp":"2007-","dateIssuedKey":"2007","publisher":"Frontiers Research Foundation","publisherPlace":"Lausanne"}],"id":{"zdb":["2411902-7"],"eki":["55908109X"],"issn":["1662-453X"]},"name":{"displayForm":["Frontiers Research Foundation"]},"physDesc":[{"extent":"Online-Ressource"}]}],"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"02 October 2023"}],"id":{"eki":["187820341X"],"doi":["10.3389/fnins.2023.1219133"]},"name":{"displayForm":["Friedrich Philipp Carrle, Yasmin Hollenbenders and Alexandra Reichenbach"]},"note":["Gesehen am 16.01.2024"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"187820341X","title":[{"title":"Generation of synthetic EEG data for training algorithms supporting the diagnosis of major depressive disorder","title_sort":"Generation of synthetic EEG data for training algorithms supporting the diagnosis of major depressive disorder"}],"person":[{"roleDisplay":"VerfasserIn","display":"Carrle, Friedrich Philipp","role":"aut","family":"Carrle","given":"Friedrich Philipp"},{"given":"Yasmin","family":"Hollenbenders","role":"aut","roleDisplay":"VerfasserIn","display":"Hollenbenders, Yasmin"},{"given":"Alexandra","family":"Reichenbach","role":"aut","roleDisplay":"VerfasserIn","display":"Reichenbach, Alexandra"}]} 
SRT |a CARRLEFRIEGENERATION0220