Dyson-Schwinger equations in zero dimensions and polynomial approximations

The Dyson-Schwinger (DS) equations for a quantum field theory in D-dimensional space-time are an infinite sequence of coupled integro-differential equations that are satisfied exactly by the Green’s functions of the field theory. This sequence of equations is underdetermined because if the infinite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bender, Carl M. (VerfasserIn) , Karapoulitidis, Christos (VerfasserIn) , Klevansky, Sandra Pamela (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1 September 2023
In: Physical review
Year: 2023, Jahrgang: 108, Heft: 5, Pages: 1-20
ISSN:2470-0029
DOI:10.1103/PhysRevD.108.056002
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevD.108.056002
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.108.056002
Volltext
Verfasserangaben:Carl M. Bender, C. Karapoulitidis, and S.P. Klevansky

MARC

LEADER 00000caa a2200000 c 4500
001 1878236709
003 DE-627
005 20240307031027.0
007 cr uuu---uuuuu
008 240116s2023 xx |||||o 00| ||eng c
024 7 |a 10.1103/PhysRevD.108.056002  |2 doi 
035 |a (DE-627)1878236709 
035 |a (DE-599)KXP1878236709 
035 |a (OCoLC)1425207896 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Bender, Carl M.  |d 1943-  |e VerfasserIn  |0 (DE-588)1175669601  |0 (DE-627)1046958488  |0 (DE-576)516383167  |4 aut 
245 1 0 |a Dyson-Schwinger equations in zero dimensions and polynomial approximations  |c Carl M. Bender, C. Karapoulitidis, and S.P. Klevansky 
264 1 |c 1 September 2023 
300 |a 20 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 16.01.2024 
520 |a The Dyson-Schwinger (DS) equations for a quantum field theory in D-dimensional space-time are an infinite sequence of coupled integro-differential equations that are satisfied exactly by the Green’s functions of the field theory. This sequence of equations is underdetermined because if the infinite sequence of DS equations is truncated to a finite sequence, there are always more Green’s functions than equations. An approach to this problem is to close the finite system by setting the highest Green’s function(s) to zero. One can examine the accuracy of this procedure in D=0 because in this special case the DS equations are just a sequence of coupled polynomial equations whose roots are the Green’s functions. For the closed system one can calculate the roots and compare them with the exact values of the Green’s functions. This procedure raises a general mathematical question: When do the roots of a sequence of polynomial approximants to a function converge to the exact roots of that function? Some roots of the polynomial approximants may (i) converge to the exact roots of the function, or (ii) approach the exact roots at first and then veer away, or (iii) converge to limiting values that are unequal to the exact roots. In this study five field-theory models in D=0 are examined, Hermitian ϕ4 and ϕ6 theories and non-Hermitian iϕ3, −ϕ4, and −iϕ5 theories. In all cases the sequences of roots converge to limits that differ by a few percent from the exact answers. Sophisticated asymptotic techniques are devised that increase the accuracy to one part in 107. Part of this work appears in abbreviated form in Phys. Rev. Lett. 130, 101602 (2023). 
700 1 |a Karapoulitidis, Christos  |e VerfasserIn  |0 (DE-588)1299849008  |0 (DE-627)1857222091  |4 aut 
700 1 |a Klevansky, Sandra Pamela  |d 1959-  |e VerfasserIn  |0 (DE-588)1084353393  |0 (DE-627)848523520  |0 (DE-576)456294600  |4 aut 
773 0 8 |i Enthalten in  |t Physical review  |d Ridge, NY : American Physical Society, 2016  |g 108(2023), 5, Artikel-ID 056002, Seite 1-20  |h Online-Ressource  |w (DE-627)846313510  |w (DE-600)2844732-3  |w (DE-576)454495811  |x 2470-0029  |7 nnas  |a Dyson-Schwinger equations in zero dimensions and polynomial approximations 
773 1 8 |g volume:108  |g year:2023  |g number:5  |g elocationid:056002  |g pages:1-20  |g extent:20  |a Dyson-Schwinger equations in zero dimensions and polynomial approximations 
856 4 0 |u https://doi.org/10.1103/PhysRevD.108.056002  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://link.aps.org/doi/10.1103/PhysRevD.108.056002  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20240116 
993 |a Article 
994 |a 2023 
998 |g 1084353393  |a Klevansky, Sandra Pamela  |m 1084353393:Klevansky, Sandra Pamela  |d 700000  |d 741000  |d 741010  |d 130000  |e 700000PK1084353393  |e 741000PK1084353393  |e 741010PK1084353393  |e 130000PK1084353393  |k 0/700000/  |k 1/700000/741000/  |k 2/700000/741000/741010/  |k 0/130000/  |p 3  |y j 
998 |g 1299849008  |a Karapoulitidis, Christos  |m 1299849008:Karapoulitidis, Christos  |p 2 
999 |a KXP-PPN1878236709  |e 4459799332 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Carl M. Bender, C. Karapoulitidis, and S.P. Klevansky"]},"id":{"eki":["1878236709"],"doi":["10.1103/PhysRevD.108.056002"]},"origin":[{"dateIssuedDisp":"1 September 2023","dateIssuedKey":"2023"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["published by American Physical Society"]},"id":{"eki":["846313510"],"zdb":["2844732-3"],"issn":["2470-0029"]},"origin":[{"publisherPlace":"Ridge, NY","dateIssuedDisp":"2016-","dateIssuedKey":"2016","publisher":"American Physical Society"}],"recId":"846313510","language":["eng"],"corporate":[{"role":"isb","roleDisplay":"Herausgebendes Organ","display":"American Physical Society"}],"note":["Gesehen am 14.03.2023"],"disp":"Dyson-Schwinger equations in zero dimensions and polynomial approximationsPhysical review","type":{"media":"Online-Ressource","bibl":"periodical"},"titleAlt":[{"title":"Particles, fields, gravitation, and cosmology"}],"part":{"extent":"20","text":"108(2023), 5, Artikel-ID 056002, Seite 1-20","volume":"108","issue":"5","pages":"1-20","year":"2023"},"pubHistory":["3rd series, volume 93, number 1 (January 2016)-"],"title":[{"title_sort":"Physical review","title":"Physical review"}]}],"physDesc":[{"extent":"20 S."}],"person":[{"roleDisplay":"VerfasserIn","display":"Bender, Carl M.","role":"aut","family":"Bender","given":"Carl M."},{"display":"Karapoulitidis, Christos","roleDisplay":"VerfasserIn","role":"aut","family":"Karapoulitidis","given":"Christos"},{"family":"Klevansky","given":"Sandra Pamela","roleDisplay":"VerfasserIn","display":"Klevansky, Sandra Pamela","role":"aut"}],"title":[{"title_sort":"Dyson-Schwinger equations in zero dimensions and polynomial approximations","title":"Dyson-Schwinger equations in zero dimensions and polynomial approximations"}],"language":["eng"],"recId":"1878236709","note":["Gesehen am 16.01.2024"],"type":{"media":"Online-Ressource","bibl":"article-journal"}} 
SRT |a BENDERCARLDYSONSCHWI1202