Finding large rainbow trees in colourings of Kn,n

A subgraph of an edge-coloured graph is called rainbow if all of its edges have distinct colours. An edge-colouring is called locally k-bounded if each vertex is incident with at most k edges of the same colour. Recently, Montgomery, Pokrovskiy and Sudakov showed that for large n, a certain locally...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Matthes, Julian (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: Nov 17, 2023
In: The electronic journal of combinatorics
Year: 2023, Jahrgang: 30, Heft: 4, Pages: 1-21
ISSN:1077-8926
DOI:10.37236/10976
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.37236/10976
Verlag, kostenfrei, Volltext: https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DynamicDOIArticle&SrcApp=WOS&KeyAID=10.37236%2F10976&DestApp=DOI&SrcAppSID=EUW1ED0B7AFst6dUktUywCjS437yp&SrcJTitle=ELECTRONIC+JOURNAL+OF+COMBINATORICS&DestDOIRegistrantName=The+Electronic+Journal+of+Combinatorics
Volltext
Verfasserangaben:Julian Matthes

MARC

LEADER 00000caa a2200000 c 4500
001 1878588184
003 DE-627
005 20240307030551.0
007 cr uuu---uuuuu
008 240122s2023 xx |||||o 00| ||eng c
024 7 |a 10.37236/10976  |2 doi 
035 |a (DE-627)1878588184 
035 |a (DE-599)KXP1878588184 
035 |a (OCoLC)1425207559 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 17  |2 sdnb 
100 1 |a Matthes, Julian  |e VerfasserIn  |0 (DE-588)1316763560  |0 (DE-627)1878588796  |4 aut 
245 1 0 |a Finding large rainbow trees in colourings of Kn,n  |c Julian Matthes 
246 1 |i Abweichender Titel  |a K n n 
246 3 3 |a Finding large rainbow trees in colourings of K n, n 
264 1 |c Nov 17, 2023 
300 |a 21 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Im Titel sind beide n tiefgestellt 
500 |a Gesehen am 22.01.2024 
520 |a A subgraph of an edge-coloured graph is called rainbow if all of its edges have distinct colours. An edge-colouring is called locally k-bounded if each vertex is incident with at most k edges of the same colour. Recently, Montgomery, Pokrovskiy and Sudakov showed that for large n, a certain locally 2-bounded edge-colouring of the complete graph K2n+1 contains a rainbow copy of any tree with n edges, thereby resolving a long-standing conjecture by Ringel: For large n, K2n+1 can be decomposed into copies of any tree with n edges. In this paper, we employ their methods to show that any locally k-bounded edge-colouring of the complete bipartite graph Kn,n contains a rainbow copy of any tree T with (1 - o(1))n/k edges. We show that this implies that every tree with n edges packs at least n times into Kn+o(1),n+o(1). We conjecture that for large n, Kn,n can be decomposed into n copies of any tree with n edges. 
773 0 8 |i Enthalten in  |t The electronic journal of combinatorics  |d [Madralin] : EMIS ELibEMS, 1994  |g 30(2023), 4, Artikel-ID P4.2, Seite 1-21  |w (DE-627)312211775  |w (DE-600)2010998-2  |w (DE-576)281192707  |x 1077-8926  |7 nnas  |a Finding large rainbow trees in colourings of Kn,n 
773 1 8 |g volume:30  |g year:2023  |g number:4  |g elocationid:P4.2  |g pages:1-21  |g extent:21  |a Finding large rainbow trees in colourings of Kn,n 
856 4 0 |u https://doi.org/10.37236/10976  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DynamicDOIArticle&SrcApp=WOS&KeyAID=10.37236%2F10976&DestApp=DOI&SrcAppSID=EUW1ED0B7AFst6dUktUywCjS437yp&SrcJTitle=ELECTRONIC+JOURNAL+OF+COMBINATORICS&DestDOIRegistrantName=The+Electronic+Journal+of+Combinatorics  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20240122 
993 |a Article 
994 |a 2023 
998 |g 1316763560  |a Matthes, Julian  |m 1316763560:Matthes, Julian  |d 180000  |d 181000  |e 180000PM1316763560  |e 181000PM1316763560  |k 0/180000/  |k 1/180000/181000/  |p 1  |x j  |y j 
999 |a KXP-PPN1878588184  |e 4464764304 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Matthes, Julian","given":"Julian","family":"Matthes"}],"title":[{"title_sort":"Finding large rainbow trees in colourings of Kn,n","title":"Finding large rainbow trees in colourings of Kn,n"}],"language":["eng"],"recId":"1878588184","note":["Im Titel sind beide n tiefgestellt","Gesehen am 22.01.2024"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"titleAlt":[{"title":"K n n"},{"title":"Finding large rainbow trees in colourings of K n, n"}],"name":{"displayForm":["Julian Matthes"]},"id":{"doi":["10.37236/10976"],"eki":["1878588184"]},"origin":[{"dateIssuedDisp":"Nov 17, 2023","dateIssuedKey":"2023"}],"relHost":[{"id":{"issn":["1077-8926"],"zdb":["2010998-2"],"eki":["312211775"]},"title":[{"title_sort":"electronic journal of combinatorics","title":"The electronic journal of combinatorics"}],"origin":[{"dateIssuedKey":"1994","publisher":"EMIS ELibEMS","dateIssuedDisp":"1994-","publisherPlace":"[Madralin]"}],"recId":"312211775","language":["eng"],"note":["Gesehen am 01.10.20"],"disp":"Finding large rainbow trees in colourings of Kn,nThe electronic journal of combinatorics","type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"year":"2023","issue":"4","pages":"1-21","text":"30(2023), 4, Artikel-ID P4.2, Seite 1-21","volume":"30","extent":"21"},"pubHistory":["1.1994 -"]}],"physDesc":[{"extent":"21 S."}]} 
SRT |a MATTHESJULFINDINGLAR1720