Finding large rainbow trees in colourings of Kn,n
A subgraph of an edge-coloured graph is called rainbow if all of its edges have distinct colours. An edge-colouring is called locally k-bounded if each vertex is incident with at most k edges of the same colour. Recently, Montgomery, Pokrovskiy and Sudakov showed that for large n, a certain locally...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
Nov 17, 2023
|
| In: |
The electronic journal of combinatorics
Year: 2023, Jahrgang: 30, Heft: 4, Pages: 1-21 |
| ISSN: | 1077-8926 |
| DOI: | 10.37236/10976 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.37236/10976 Verlag, kostenfrei, Volltext: https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DynamicDOIArticle&SrcApp=WOS&KeyAID=10.37236%2F10976&DestApp=DOI&SrcAppSID=EUW1ED0B7AFst6dUktUywCjS437yp&SrcJTitle=ELECTRONIC+JOURNAL+OF+COMBINATORICS&DestDOIRegistrantName=The+Electronic+Journal+of+Combinatorics |
| Verfasserangaben: | Julian Matthes |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1878588184 | ||
| 003 | DE-627 | ||
| 005 | 20240307030551.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 240122s2023 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.37236/10976 |2 doi | |
| 035 | |a (DE-627)1878588184 | ||
| 035 | |a (DE-599)KXP1878588184 | ||
| 035 | |a (OCoLC)1425207559 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 17 |2 sdnb | ||
| 100 | 1 | |a Matthes, Julian |e VerfasserIn |0 (DE-588)1316763560 |0 (DE-627)1878588796 |4 aut | |
| 245 | 1 | 0 | |a Finding large rainbow trees in colourings of Kn,n |c Julian Matthes |
| 246 | 1 | |i Abweichender Titel |a K n n | |
| 246 | 3 | 3 | |a Finding large rainbow trees in colourings of K n, n |
| 264 | 1 | |c Nov 17, 2023 | |
| 300 | |a 21 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Im Titel sind beide n tiefgestellt | ||
| 500 | |a Gesehen am 22.01.2024 | ||
| 520 | |a A subgraph of an edge-coloured graph is called rainbow if all of its edges have distinct colours. An edge-colouring is called locally k-bounded if each vertex is incident with at most k edges of the same colour. Recently, Montgomery, Pokrovskiy and Sudakov showed that for large n, a certain locally 2-bounded edge-colouring of the complete graph K2n+1 contains a rainbow copy of any tree with n edges, thereby resolving a long-standing conjecture by Ringel: For large n, K2n+1 can be decomposed into copies of any tree with n edges. In this paper, we employ their methods to show that any locally k-bounded edge-colouring of the complete bipartite graph Kn,n contains a rainbow copy of any tree T with (1 - o(1))n/k edges. We show that this implies that every tree with n edges packs at least n times into Kn+o(1),n+o(1). We conjecture that for large n, Kn,n can be decomposed into n copies of any tree with n edges. | ||
| 773 | 0 | 8 | |i Enthalten in |t The electronic journal of combinatorics |d [Madralin] : EMIS ELibEMS, 1994 |g 30(2023), 4, Artikel-ID P4.2, Seite 1-21 |w (DE-627)312211775 |w (DE-600)2010998-2 |w (DE-576)281192707 |x 1077-8926 |7 nnas |a Finding large rainbow trees in colourings of Kn,n |
| 773 | 1 | 8 | |g volume:30 |g year:2023 |g number:4 |g elocationid:P4.2 |g pages:1-21 |g extent:21 |a Finding large rainbow trees in colourings of Kn,n |
| 856 | 4 | 0 | |u https://doi.org/10.37236/10976 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DynamicDOIArticle&SrcApp=WOS&KeyAID=10.37236%2F10976&DestApp=DOI&SrcAppSID=EUW1ED0B7AFst6dUktUywCjS437yp&SrcJTitle=ELECTRONIC+JOURNAL+OF+COMBINATORICS&DestDOIRegistrantName=The+Electronic+Journal+of+Combinatorics |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20240122 | ||
| 993 | |a Article | ||
| 994 | |a 2023 | ||
| 998 | |g 1316763560 |a Matthes, Julian |m 1316763560:Matthes, Julian |d 180000 |d 181000 |e 180000PM1316763560 |e 181000PM1316763560 |k 0/180000/ |k 1/180000/181000/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1878588184 |e 4464764304 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Matthes, Julian","given":"Julian","family":"Matthes"}],"title":[{"title_sort":"Finding large rainbow trees in colourings of Kn,n","title":"Finding large rainbow trees in colourings of Kn,n"}],"language":["eng"],"recId":"1878588184","note":["Im Titel sind beide n tiefgestellt","Gesehen am 22.01.2024"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"titleAlt":[{"title":"K n n"},{"title":"Finding large rainbow trees in colourings of K n, n"}],"name":{"displayForm":["Julian Matthes"]},"id":{"doi":["10.37236/10976"],"eki":["1878588184"]},"origin":[{"dateIssuedDisp":"Nov 17, 2023","dateIssuedKey":"2023"}],"relHost":[{"id":{"issn":["1077-8926"],"zdb":["2010998-2"],"eki":["312211775"]},"title":[{"title_sort":"electronic journal of combinatorics","title":"The electronic journal of combinatorics"}],"origin":[{"dateIssuedKey":"1994","publisher":"EMIS ELibEMS","dateIssuedDisp":"1994-","publisherPlace":"[Madralin]"}],"recId":"312211775","language":["eng"],"note":["Gesehen am 01.10.20"],"disp":"Finding large rainbow trees in colourings of Kn,nThe electronic journal of combinatorics","type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"year":"2023","issue":"4","pages":"1-21","text":"30(2023), 4, Artikel-ID P4.2, Seite 1-21","volume":"30","extent":"21"},"pubHistory":["1.1994 -"]}],"physDesc":[{"extent":"21 S."}]} | ||
| SRT | |a MATTHESJULFINDINGLAR1720 | ||