Machine learning approaches reveal highly heterogeneous air quality co-benefits of the energy transition

Estimating health benefits of reducing fossil fuel use from improved air quality provides important rationales for carbon emissions abatement. Simulating pollution concentration is a crucial step of the estimation, but traditional approaches often rely on complicated chemical transport models that r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhang, Da (VerfasserIn) , Wang, Qingyi (VerfasserIn) , Song, Shaojie (VerfasserIn) , Chen, Simiao (VerfasserIn) , Li, Mingwei (VerfasserIn) , Shen, Lu (VerfasserIn) , Zheng, Siqi (VerfasserIn) , Cai, Bofeng (VerfasserIn) , Wang, Shenhao (VerfasserIn) , Zheng, Haotian (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 15 September 2023
In: iScience
Year: 2023, Jahrgang: 26, Heft: 9, Pages: 1-16
ISSN:2589-0042
DOI:10.1016/j.isci.2023.107652
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.isci.2023.107652
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S2589004223017297
Volltext
Verfasserangaben:Da Zhang, Qingyi Wang, Shaojie Song, Simiao Chen, Mingwei Li, Lu Shen, Siqi Zheng, Bofeng Cai, Shenhao Wang, and Haotian Zheng

MARC

LEADER 00000caa a2200000 c 4500
001 1878714406
003 DE-627
005 20240307030306.0
007 cr uuu---uuuuu
008 240123s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.isci.2023.107652  |2 doi 
035 |a (DE-627)1878714406 
035 |a (DE-599)KXP1878714406 
035 |a (OCoLC)1425207710 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 44  |2 sdnb 
100 1 |a Zhang, Da  |e VerfasserIn  |0 (DE-588)1051404290  |0 (DE-627)786141166  |0 (DE-576)406421307  |4 aut 
245 1 0 |a Machine learning approaches reveal highly heterogeneous air quality co-benefits of the energy transition  |c Da Zhang, Qingyi Wang, Shaojie Song, Simiao Chen, Mingwei Li, Lu Shen, Siqi Zheng, Bofeng Cai, Shenhao Wang, and Haotian Zheng 
264 1 |c 15 September 2023 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 23.01.2024 
520 |a Estimating health benefits of reducing fossil fuel use from improved air quality provides important rationales for carbon emissions abatement. Simulating pollution concentration is a crucial step of the estimation, but traditional approaches often rely on complicated chemical transport models that require extensive expertise and computational resources. In this study, we develop a machine learning framework that is able to provide precise and robust annual average fine particle (PM2.5) concentration estimations directly from a high-resolution fossil energy use dataset. Applications of the framework with Chinese data reveal highly heterogeneous health benefits of avoiding premature mortality by reducing fossil fuel use in different sectors and regions in China with a mean of $19/tCO2 and a standard deviation of $38/tCO2. Reducing rural and residential coal use offers the highest co-benefits with a mean of $151/tCO2. Our findings prompt careful policy designs to maximize cost-effectiveness in the transition toward a carbon-neutral energy system. 
650 4 |a Atmospheric chemistry 
650 4 |a Atmospheric science 
650 4 |a Energy sustainability 
650 4 |a Machine learning 
700 1 |a Wang, Qingyi  |e VerfasserIn  |4 aut 
700 1 |a Song, Shaojie  |e VerfasserIn  |4 aut 
700 1 |a Chen, Simiao  |e VerfasserIn  |0 (DE-588)1138719242  |0 (DE-627)896263061  |0 (DE-576)492659265  |4 aut 
700 1 |a Li, Mingwei  |e VerfasserIn  |4 aut 
700 1 |a Shen, Lu  |e VerfasserIn  |4 aut 
700 1 |a Zheng, Siqi  |e VerfasserIn  |4 aut 
700 1 |a Cai, Bofeng  |e VerfasserIn  |4 aut 
700 1 |a Wang, Shenhao  |e VerfasserIn  |4 aut 
700 1 |a Zheng, Haotian  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t iScience  |d Amsterdam : Elsevier, 2018  |g 26(2023), 9, Artikel-ID 107652, Seite 1-16  |h Online-Ressource  |w (DE-627)1019532106  |w (DE-600)2927064-9  |w (DE-576)502115858  |x 2589-0042  |7 nnas  |a Machine learning approaches reveal highly heterogeneous air quality co-benefits of the energy transition 
773 1 8 |g volume:26  |g year:2023  |g number:9  |g elocationid:107652  |g pages:1-16  |g extent:16  |a Machine learning approaches reveal highly heterogeneous air quality co-benefits of the energy transition 
856 4 0 |u https://doi.org/10.1016/j.isci.2023.107652  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S2589004223017297  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20240123 
993 |a Article 
994 |a 2023 
998 |g 1138719242  |a Chen, Simiao  |m 1138719242:Chen, Simiao  |d 50000  |e 50000PC1138719242  |k 0/50000/ 
999 |a KXP-PPN1878714406  |e 4466433453 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"display":"Zhang, Da","role":"aut","family":"Zhang","given":"Da"},{"family":"Wang","given":"Qingyi","display":"Wang, Qingyi","role":"aut"},{"display":"Song, Shaojie","role":"aut","family":"Song","given":"Shaojie"},{"role":"aut","display":"Chen, Simiao","given":"Simiao","family":"Chen"},{"given":"Mingwei","family":"Li","role":"aut","display":"Li, Mingwei"},{"given":"Lu","family":"Shen","role":"aut","display":"Shen, Lu"},{"role":"aut","display":"Zheng, Siqi","given":"Siqi","family":"Zheng"},{"family":"Cai","given":"Bofeng","display":"Cai, Bofeng","role":"aut"},{"given":"Shenhao","family":"Wang","role":"aut","display":"Wang, Shenhao"},{"role":"aut","display":"Zheng, Haotian","given":"Haotian","family":"Zheng"}],"language":["eng"],"physDesc":[{"extent":"16 S."}],"id":{"doi":["10.1016/j.isci.2023.107652"],"eki":["1878714406"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title_sort":"Machine learning approaches reveal highly heterogeneous air quality co-benefits of the energy transition","title":"Machine learning approaches reveal highly heterogeneous air quality co-benefits of the energy transition"}],"relHost":[{"part":{"text":"26(2023), 9, Artikel-ID 107652, Seite 1-16","issue":"9","pages":"1-16","extent":"16","year":"2023","volume":"26"},"pubHistory":["Volume 1 (March 23, 2018)-"],"type":{"bibl":"periodical","media":"Online-Ressource"},"id":{"eki":["1019532106"],"issn":["2589-0042"],"zdb":["2927064-9"]},"origin":[{"publisher":"Elsevier","dateIssuedDisp":"[2018]-","publisherPlace":"Amsterdam ; Boston ; London ; New York ; Oxford ; Paris ; Philadelphia ; San Diego ; St. Louis"}],"recId":"1019532106","title":[{"title":"iScience","title_sort":"iScience"}],"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"disp":"Machine learning approaches reveal highly heterogeneous air quality co-benefits of the energy transitioniScience","note":["Gesehen am 11.09.2018"]}],"recId":"1878714406","name":{"displayForm":["Da Zhang, Qingyi Wang, Shaojie Song, Simiao Chen, Mingwei Li, Lu Shen, Siqi Zheng, Bofeng Cai, Shenhao Wang, and Haotian Zheng"]},"note":["Gesehen am 23.01.2024"],"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"15 September 2023"}]} 
SRT |a ZHANGDAWANMACHINELEA1520